ترغب بنشر مسار تعليمي؟ اضغط هنا

Sent2Span: Span Detection for PICO Extraction in the Biomedical Text without Span Annotations

143   0   0.0 ( 0 )
 نشر من قبل Shifeng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rapid growth in published clinical trials makes it difficult to maintain up-to-date systematic reviews, which requires finding all relevant trials. This leads to policy and practice decisions based on out-of-date, incomplete, and biased subsets of available clinical evidence. Extracting and then normalising Population, Intervention, Comparator, and Outcome (PICO) information from clinical trial articles may be an effective way to automatically assign trials to systematic reviews and avoid searching and screening - the two most time-consuming systematic review processes. We propose and test a novel approach to PICO span detection. The major difference between our proposed method and previous approaches comes from detecting spans without needing annotated span data and using only crowdsourced sentence-level annotations. Experiments on two datasets show that PICO span detection results achieve much higher results for recall when compared to fully supervised methods with PICO sentence detection at least as good as human annotations. By removing the reliance on expert annotations for span detection, this work could be used in human-machine pipeline for turning low-quality crowdsourced, and sentence-level PICO annotations into structured information that can be used to quickly assign trials to relevant systematic reviews.



قيم البحث

اقرأ أيضاً

Even as pre-trained language encoders such as BERT are shared across many tasks, the output layers of question answering, text classification, and regression models are significantly different. Span decoders are frequently used for question answering , fixed-class, classification layers for text classification, and similarity-scoring layers for regression tasks, We show that this distinction is not necessary and that all three can be unified as span extraction. A unified, span-extraction approach leads to superior or comparable performance in supplementary supervised pre-trained, low-data, and multi-task learning experiments on several question answering, text classification, and regression benchmarks.
The introduction of pretrained language models has reduced many complex task-specific NLP models to simple lightweight layers. An exception to this trend is coreference resolution, where a sophisticated task-specific model is appended to a pretrained transformer encoder. While highly effective, the model has a very large memory footprint -- primarily due to dynamically-constructed span and span-pair representations -- which hinders the processing of complete documents and the ability to train on multiple instances in a single batch. We introduce a lightweight end-to-end coreference model that removes the dependency on span representations, handcrafted features, and heuristics. Our model performs competitively with the current standard model, while being simpler and more efficient.
Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we prop ose SSMix, a novel mixup method where the operation is performed on input text rather than on hidden vectors like previous approaches. SSMix synthesizes a sentence while preserving the locality of two original texts by span-based mixing and keeping more tokens related to the prediction relying on saliency information. With extensive experiments, we empirically validate that our method outperforms hidden-level mixup methods on a wide range of text classification benchmarks, including textual entailment, sentiment classification, and question-type classification. Our code is available at https://github.com/clovaai/ssmix.
Keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. Since keyphrase extraction is able to facilitate the management, categorization, and retrieval of information, it h as received much attention in recent years. There are three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks. Two-step ranking approach is based on feature engineering, which is labor intensive and domain dependent. Sequence labeling is not able to tackle overlapping phrases. Generation methods (i.e., Sequence-to-sequence neural network models) overcome those shortcomings, so they have been widely studied and gain state-of-the-art performance. However, generation methods can not utilize context information effectively. In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens. In this way, our model obtains representation for each keyphrase and further learns to capture the interaction between keyphrases in one document to get better ranking results. In addition, with the help of tokens, our model is able to extract overlapped keyphrases. Experimental results on the benchmark datasets show that our proposed model outperforms the existing methods by a large margin.
87 - Gaochen Wu , Bin Xu , Dejie Chang 2021
Span-extraction reading comprehension models have made tremendous advances enabled by the availability of large-scale, high-quality training datasets. Despite such rapid progress and widespread application, extractive reading comprehension datasets i n languages other than English remain scarce, and creating such a sufficient amount of training data for each language is costly and even impossible. An alternative to creating large-scale high-quality monolingual span-extraction training datasets is to develop multilingual modeling approaches and systems which can transfer to the target language without requiring training data in that language. In this paper, in order to solve the scarce availability of extractive reading comprehension training data in the target language, we propose a multilingual extractive reading comprehension approach called XLRC by simultaneously modeling the existing extractive reading comprehension training data in a multilingual environment using self-adaptive attention and multilingual attention. Specifically, we firstly construct multilingual parallel corpora by translating the existing extractive reading comprehension datasets (i.e., CMRC 2018) from the target language (i.e., Chinese) into different language families (i.e., English). Secondly, to enhance the final target representation, we adopt self-adaptive attention (SAA) to combine self-attention and inter-attention to extract the semantic relations from each pair of the target and source languages. Furthermore, we propose multilingual attention (MLA) to learn the rich knowledge from various language families. Experimental results show that our model outperforms the state-of-the-art baseline (i.e., RoBERTa_Large) on the CMRC 2018 task, which demonstrate the effectiveness of our proposed multi-lingual modeling approach and show the potentials in multilingual NLP tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا