ترغب بنشر مسار تعليمي؟ اضغط هنا

SSMix: Saliency-Based Span Mixup for Text Classification

123   0   0.0 ( 0 )
 نشر من قبل Soyoung Yoon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we propose SSMix, a novel mixup method where the operation is performed on input text rather than on hidden vectors like previous approaches. SSMix synthesizes a sentence while preserving the locality of two original texts by span-based mixing and keeping more tokens related to the prediction relying on saliency information. With extensive experiments, we empirically validate that our method outperforms hidden-level mixup methods on a wide range of text classification benchmarks, including textual entailment, sentiment classification, and question-type classification. Our code is available at https://github.com/clovaai/ssmix.

قيم البحث

اقرأ أيضاً

In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can b e infeasible because of the labeling cost, task characteristics, and privacy concerns. This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries. First, we construct a dictionary-based heterogeneous graph (DHG) from bilingual dictionaries. This opens the possibility to use graph neural networks for cross-lingual transfer. The remaining challenge is the heterogeneity of DHG because multiple languages are considered. To address this challenge, we propose dictionary-based heterogeneous graph neural network (DHGNet) that effectively handles the heterogeneity of DHG by two-step aggregations, which are word-level and language-level aggregations. Experimental results demonstrate that our method outperforms pretrained models even though it does not access to large corpora. Furthermore, it can perform well even though dictionaries contain many incorrect translations. Its robustness allows the usage of a wider range of dictionaries such as an automatically constructed dictionary and crowdsourced dictionary, which are convenient for real-world applications.
Continual learning has become increasingly important as it enables NLP models to constantly learn and gain knowledge over time. Previous continual learning methods are mainly designed to preserve knowledge from previous tasks, without much emphasis o n how to well generalize models to new tasks. In this work, we propose an information disentanglement based regularization method for continual learning on text classification. Our proposed method first disentangles text hidden spaces into representations that are generic to all tasks and representations specific to each individual task, and further regularizes these representations differently to better constrain the knowledge required to generalize. We also introduce two simple auxiliary tasks: next sentence prediction and task-id prediction, for learning better generic and specific representation spaces. Experiments conducted on large-scale benchmarks demonstrate the effectiveness of our method in continual text classification tasks with various sequences and lengths over state-of-the-art baselines. We have publicly released our code at https://github.com/GT-SALT/IDBR.
Even as pre-trained language encoders such as BERT are shared across many tasks, the output layers of question answering, text classification, and regression models are significantly different. Span decoders are frequently used for question answering , fixed-class, classification layers for text classification, and similarity-scoring layers for regression tasks, We show that this distinction is not necessary and that all three can be unified as span extraction. A unified, span-extraction approach leads to superior or comparable performance in supplementary supervised pre-trained, low-data, and multi-task learning experiments on several question answering, text classification, and regression benchmarks.
Mixup, a recent proposed data augmentation method through linearly interpolating inputs and modeling targets of random samples, has demonstrated its capability of significantly improving the predictive accuracy of the state-of-the-art networks for im age classification. However, how this technique can be applied to and what is its effectiveness on natural language processing (NLP) tasks have not been investigated. In this paper, we propose two strategies for the adaption of Mixup on sentence classification: one performs interpolation on word embeddings and another on sentence embeddings. We conduct experiments to evaluate our methods using several benchmark datasets. Our studies show that such interpolation strategies serve as an effective, domain independent data augmentation approach for sentence classification, and can result in significant accuracy improvement for both CNN and LSTM models.
Automatic annotation of short-text data to a large number of target labels, referred to as Short Text Extreme Classification, has recently found numerous applications in prediction of related searches and product recommendation tasks. The conventiona l usage of Convolutional Neural Network (CNN) to capture n-grams in text-classification relies heavily on uniformity in word-ordering and the presence of long input sequences to convolve over. However, this is missing in short and unstructured text sequences encountered in search and recommendation. In order to tackle this, we propose an orthogonal approach by recasting the convolution operation to capture coupled semantics along the embedding dimensions, and develop a word-order agnostic embedding enhancement module to deal with the lack of structure in such queries. Benefitting from the computational efficiency of the convolution operation, Embedding Convolutions, when applied on the enriched word embeddings, result in a light-weight and yet powerful encoder (InceptionXML) that is robust to the inherent lack of structure in short-text extreme classification. Towards scaling our model to problems with millions of labels, we also propose InceptionXML+, which addresses the shortcomings of the dynamic hard-negative mining framework in the recently proposed LightXML by improving the alignment between the label-shortlister and extreme classifier. On popular benchmark datasets, we empirically demonstrate that the proposed method outperforms state-of-the-art deep extreme classifiers such as Astec by an average of 5% and 8% on the P@k and propensity-scored PSP@k metrics respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا