ترغب بنشر مسار تعليمي؟ اضغط هنا

TagPick: A System for Bridging Micro-Video Hashtags and E-commerce Categories

82   0   0.0 ( 0 )
 نشر من قبل Li He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hashtag, a product of user tagging behavior, which can well describe the semantics of the user-generated content personally over social network applications, e.g., the recently popular micro-videos. Hashtags have been widely used to facilitate various micro-video retrieval scenarios, such as search engine and categorization. In order to leverage hashtags on micro-media platform for effective e-commerce marketing campaign, there is a demand from e-commerce industry to develop a mapping algorithm bridging its categories and micro-video hashtags. In this demo paper, we therefore proposed a novel solution called TagPick that incorporates clues from all user behavior metadata (hashtags, interactions, multimedia information) as well as relational data (graph-based network) into a unified system to reveal the correlation between e-commerce categories and hashtags in industrial scenarios. In particular, we provide a tag-level popularity strategy to recommend the relevant hashtags for e-Commerce platform (e.g., eBay).



قيم البحث

اقرأ أيضاً

Nowadays, live-stream and short video shopping in E-commerce have grown exponentially. However, the sellers are required to manually match images of the selling products to the timestamp of exhibition in the untrimmed video, resulting in a complicate d process. To solve the problem, we present an innovative demonstration of multi-modal retrieval system called Fashion Focus, which enables to exactly localize the product images in the online video as the focuses. Different modality contributes to the community localization, including visual content, linguistic features and interaction context are jointly investigated via presented multi-modal learning. Our system employs two procedures for analysis, including video content structuring and multi-modal retrieval, to automatically achieve accurate video-to-shop matching. Fashion Focus presents a unified framework that can orientate the consumers towards relevant product exhibitions during watching videos and help the sellers to effectively deliver the products over search and recommendation.
The progressive digitalization is changing the way businesses work and interact. Concepts like Internet of Things, Cloud Computing, Industry 4.0, Service 4.0, Smart Production or Smart Cities are based on systems that are linked to the Internet. The online access to the provided data creates potential to optimize processes and cost reductions, but also exposes it to a risk for an inappropriate use. Trust management systems are necessary in terms of data security, but also to assure the trustworthiness of data that is distributed. Fake news in social media is an example for problems with online data that is not trustable. Security and trustworthiness of data are major concerns today. The speed in digitalization makes it even a greater challenge for future research. This article introduces therefore a model of online trust content usable to compute the trust of an online service advertisement. It contributes to standardize business service descriptions necessary to realize visions of E-commerce 4.0, because it is the basis for the development of AI systems that are able to match an service request to a service advertisement. It is necessary for building trust enhancing architectures in B2B e-commerce. To do so, we conducted case studies, analysed websites, developed a prototype system and verified it by conducting expert interviews.
We study collective attention paid towards hurricanes through the lens of $n$-grams on Twitter, a social media platform with global reach. Using hurricane name mentions as a proxy for awareness, we find that the exogenous temporal dynamics are remark ably similar across storms, but that overall collective attention varies widely even among storms causing comparable deaths and damage. We construct `hurricane attention maps and observe that hurricanes causing deaths on (or economic damage to) the continental United States generate substantially more attention in English language tweets than those that do not. We find that a hurricanes Saffir-Simpson wind scale category assignment is strongly associated with the amount of attention it receives. Higher category storms receive higher proportional increases of attention per proportional increases in number of deaths or dollars of damage, than lower category storms. The most damaging and deadly storms of the 2010s, Hurricanes Harvey and Maria, generated the most attention and were remembered the longest, respectively. On average, a category 5 storm receives 4.6 times more attention than a category 1 storm causing the same number of deaths and economic damage.
Personalized size and fit recommendations bear crucial significance for any fashion e-commerce platform. Predicting the correct fit drives customer satisfaction and benefits the business by reducing costs incurred due to size-related returns. Traditi onal collaborative filtering algorithms seek to model customer preferences based on their previous orders. A typical challenge for such methods stems from extreme sparsity of customer-article orders. To alleviate this problem, we propose a deep learning based content-collaborative methodology for personalized size and fit recommendation. Our proposed method can ingest arbitrary customer and article data and can model multiple individuals or intents behind a single account. The method optimizes a global set of parameters to learn population-level abstractions of size and fit relevant information from observed customer-article interactions. It further employs customer and article specific embedding variables to learn their properties. Together with learned entity embeddings, the method maps additional customer and article attributes into a latent space to derive personalized recommendations. Application of our method to two publicly available datasets demonstrate an improvement over the state-of-the-art published results. On two proprietary datasets, one containing fit feedback from fashion experts and the other involving customer purchases, we further outperform comparable methodologies, including a recent Bayesian approach for size recommendation.
In addition to posting news and status updates, many Twitter users post questions that seek various types of subjective and objective information. These questions are often labeled with Q&A hashtags, such as #lazyweb or #twoogle. We surveyed Twitter users and found they employ these Q&A hashtags both as a topical signifier (this tweet needs an answer!) and to reach out to those beyond their immediate followers (a community of helpful tweeters who monitor the hashtag). However, our log analysis of thousands of hashtagged Q&A exchanges reveals that nearly all replies to hashtagged questions come from a users immediate follower network, contradicting users beliefs that they are tapping into a larger community by tagging their question tweets. This finding has implications for designing next-generation social search systems that reach and engage a wide audience of answerers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا