ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven dissipativity analysis: application of the matrix S-lemma

73   0   0.0 ( 0 )
 نشر من قبل Henk J. van Waarde
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of dissipativity, as introduced by Jan Willems, is one of the cornerstones of systems and control theory. Typically, dissipativity properties are verified by resorting to a mathematical model of the system under consideration. In this paper, we aim at assessing dissipativity by computing storage functions for linear systems directly from measured data. As our main contributions, we provide conditions under which dissipativity can be ascertained from a finite collection of noisy data samples. Three different noise models will be considered that can capture a variety of situations, including the cases that the data samples are noise-free, the energy of the noise is bounded, or the individual noise samples are bounded. All of our conditions are phrased in terms of data-based linear matrix inequalities, which can be readily solved using existing software packages.



قيم البحث

اقرأ أيضاً

164 - Mengmeng Song , Yong Xia 2021
We extend Polyaks theorem on the convexity of joint numerical range from three to any number of quadratic forms on condition that they can be generated by three quadratic forms with a positive definite linear combination. Our new result covers the fu ndamental Diness theorem. As applications, we further extend Yuans lemma and S-lemma, respectively. Our extended Yuans lemma is used to build a more generalized assumption than that of Haeser (J. Optim. Theory Appl. 174(3): 641-649, 2017), under which the standard second-order necessary optimality condition holds at local minimizer. The extended S-lemma reveals strong duality of homogeneous quadratic optimization problem with two bilateral quadratic constraints.
71 - Meijia Yang , Yong Xia , Shu Wang 2021
We unify nonlinear Farkas lemma and S-lemma to a generalized alternative theorem for nonlinear nonconvex system. It provides fruitful applications in globally solving nonconvex non-quadratic optimization problems via revealing the hidden convexity.
Recently, the bound and continuum spectrum of 11Be has been calculated within the ab-initio no-core shell model with continuum (NCSMC) method successfully reproducing the parity inversion in the ground state. The continuum spectrum obtained is in agr eement with known experimental levels. The S-matrix contained in the NCSMC continuum wave functions of the n+10Be system is used in this work for the first time in a Transfer-to-the-Continuum (TC) reaction calculation. The TC approach is applied to study the excitation energy spectrum of 11Be measured in the 9Be(18O,16O)11Be reaction at 84 MeV. Previously known levels are confirmed and theoretical and experimental evidence for a 9/2+ state at Ex=5.8 MeV is given, whose configuration is thought to be 10Be(2+)+n(d5/2).
The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system theoretic properties and to construct control laws, without using a system model. Persis tency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this paper, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data as data-driven control is possible only with data that are informative for system identification.
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critic ally rely on a precise knowledge of the system dynamics (thus requiring off-line system identification and model refinement). To this aim, in this paper we first show that the steady-state transfer function of a linear system can be computed directly from control experiments, bypassing explicit model identification. Then, we leverage the estimated transfer function to design a controller -- which is inspired by stochastic gradient descent methods -- that regulates the system to the solution of the prescribed optimization problem. A distinguishing feature of our methods is that they do not require any knowledge of the system dynamics, disturbance terms, or their distributions. Our technical analysis combines concepts and tools from behavioral system theory, stochastic optimization with decision-dependent distributions, and stability analysis. We illustrate the applicability of the framework on a case study for mobility-on-demand ride service scheduling in Manhattan, NY.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا