ﻻ يوجد ملخص باللغة العربية
Recently, the bound and continuum spectrum of 11Be has been calculated within the ab-initio no-core shell model with continuum (NCSMC) method successfully reproducing the parity inversion in the ground state. The continuum spectrum obtained is in agreement with known experimental levels. The S-matrix contained in the NCSMC continuum wave functions of the n+10Be system is used in this work for the first time in a Transfer-to-the-Continuum (TC) reaction calculation. The TC approach is applied to study the excitation energy spectrum of 11Be measured in the 9Be(18O,16O)11Be reaction at 84 MeV. Previously known levels are confirmed and theoretical and experimental evidence for a 9/2+ state at Ex=5.8 MeV is given, whose configuration is thought to be 10Be(2+)+n(d5/2).
Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exo
Nucleon-knockout reactions on proton targets (p, pN ) have experienced a renewed interest due to the availability of inverse-kinematics experiment with exotic nuclei. Various theoretical descriptions have been used to describe these reactions, such a
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly highe
We derive and compute effective valence-space shell-model interactions from ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three
We review some aspects of R-matrix theory and its application to the semi-empirical analysis of nuclear reactions. Important applications for nuclear astrophysics and recent results for the ${}^{12}{rm C}(alpha,gamma){}^{16}{rm O}$ reaction are emphasized.