ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Antilocalization Effect up to ~ 120 K in the van der Waals Crystal Fe5-xGeTe2 with Near Room Temperature Ferromagnetism

127   0   0.0 ( 0 )
 نشر من قبل Yanfeng Guo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The weak antilocalization (WAL) effect is known as a quantum correction to the classical conductivity, which never appeared in two-dimensional magnets. In this work, we reported the observation of a WAL effect in the van der Waals ferromagnet Fe5-xGeTe2 with a Curie temperature Tc ~ 270 K, which can even reach as high as ~ 120 K. The WAL effect could be well described by the Hikami-Larkin-Nagaoka and Maekawa-Fukuyama theories in the presence of strong spin-orbit coupling (SOC). Moreover, A crossover from a peak to dip behavior around 60 K in both the magnetoresistance and magnetoconductance was observed, which could be ascribed to a rare example of temperature driven Lifshitz transition as indicated by the angle-resolved photoemission spectroscopy measurements and first principles calculations. The reflective magnetic circular dichroism measurements indicate a possible spin reorientation that kills the WAL effect above 120 K. Our findings present a rare example of WAL effect in two-dimensional ferromagnet and also a magnetotransport fingerprint of the strong SOC in Fe5-xGeTe2. The results would be instructive for understanding the interaction Hamiltonian for such high Tc itinerant ferromagnetism as well as be helpful for the design of next-generation room temperature spintronic or twistronic devices.

قيم البحث

اقرأ أيضاً

167 - Zhengxian Li , Wei Xia , Hao Su 2020
The van der Waals ferromagnet Fe5GeTe2 has a Curie temperature TC of about 270 K, which can be raised above room temperature by tuning the Fe deficiency content. To achieve insights into its ferromagnetic exchange, we have studied the critical behavi or by measuring the magnetization in bulk Fe5GeTe2 crystal around the ferromagnetic to paramagnetic phase transition. The analysis of the magnetization by employing various techniques including the modified Arrott plot, Kouvel-Fisher plot and critical isotherm analysis achieved a set of reliable critical exponents with TC = 273.7 K, beta = 0.3457, gamma = 1.40617, and delta = 5.021, suggesting a three-dimensional magnetic exchange with the distance decaying as J(r) ~ (r)$^-4.916, which is close to that of a three-dimensional Heisenberg model with long-range magnetic coupling.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isola ted CrI3 nanoplatelets have lateral dimensions of ~25 nm and ensemble thicknesses of only ~4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering in these nanoplatelets with Curie temperatures similar to those observed in bulk CrI3, despite the strong spatial confinement. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets and associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of laterally confined 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.
Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall (QAH) effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamenta l understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~ 0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.
Two-dimensional (2D) van der Waals (vdW) magnetic materials have attracted a lot of attention owing to the stabilization of long-range magnetic order down to atomic dimensions, and the prospect of novel spintronic devices with unique functionalities. The clarification of the magnetoresistive properties and its correlation to the underlying magnetic configurations is essential for 2D vdW-based spintronic devices. Here, the effect of Co-doping on the magnetic and magnetotransport properties of Fe3GeTe2 have been investigated. Magnetotransport measurements reveal an unusual Hall effect behavior whose strength was considerably modified by Co-doping and attributed to arise from the underlying complicated spin textures. The present results provide a clue to tailoring of the underlying interactions necessary for the realization of a variety of unconventional spin textures for 2D vdW FM-based spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا