ﻻ يوجد ملخص باللغة العربية
The van der Waals ferromagnet Fe5GeTe2 has a Curie temperature TC of about 270 K, which can be raised above room temperature by tuning the Fe deficiency content. To achieve insights into its ferromagnetic exchange, we have studied the critical behavior by measuring the magnetization in bulk Fe5GeTe2 crystal around the ferromagnetic to paramagnetic phase transition. The analysis of the magnetization by employing various techniques including the modified Arrott plot, Kouvel-Fisher plot and critical isotherm analysis achieved a set of reliable critical exponents with TC = 273.7 K, beta = 0.3457, gamma = 1.40617, and delta = 5.021, suggesting a three-dimensional magnetic exchange with the distance decaying as J(r) ~ (r)$^-4.916, which is close to that of a three-dimensional Heisenberg model with long-range magnetic coupling.
In recent years, two-dimensional van der Waals materials have emerged as an important platform for the observation of long-range ferromagnetic order in atomically thin layers. Although heterostructures of such materials can be conceived to harness an
The weak antilocalization (WAL) effect is known as a quantum correction to the classical conductivity, which never appeared in two-dimensional magnets. In this work, we reported the observation of a WAL effect in the van der Waals ferromagnet Fe5-xGe
We investigate near-Fermi-energy (EF) element-specific electronic and spin states of ferromagnetic van der Waals (vdW) metal Fe5GeTe2. The soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) measurement provides spectroscopic evidence of
A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling and Hunds coupling energy in two-dimensional (2D) van der Waals (vdW) material produces novel emerging physical state. For instance, ferromagnetism in vdW
The magnetic van der Waals crystals MnBi2Te4/(Bi2Te3)n have drawn significant attention due to their rich topological properties and the tunability by external magnetic field. Although the MnBi2Te4/(Bi2Te3)n family have been intensively studied in th