ترغب بنشر مسار تعليمي؟ اضغط هنا

Lateral modulation of magnetic anisotropy in tricolor 3d-5d oxide superlattices

80   0   0.0 ( 0 )
 نشر من قبل Zhiming Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manipulating magnetic anisotropy (MA) purposefully in transition metal oxides (TMOs) enables the development of oxide-based spintronic devices with practical applications. Here, we report a pathway to reversibly switch the lateral magnetic easy-axis via interfacial oxygen octahedral coupling (OOC) effects in 3d-5d tricolor superlattices, i.e. [SrIrO3,mRTiO3,SrIrO3,2La0.67Sr0.33MnO3]10 (RTiO3: SrTiO3 and CaTiO3). In the heterostructures, the anisotropy energy (MAE) is enhanced over one magnitude to ~106 erg/cm3 compared to La0.67Sr0.33MnO3 films. Moreover, the magnetic easy-axis is reversibly reoriented between (100)- and (110)-directions by changing the RTiO3. Using first-principles density functional theory calculations, we find that the SrIrO3 owns a large single-ion anisotropy due to its strong spin-orbit interaction. This anisotropy can be reversibly controlled by the OOC, then reorient the easy-axis of the superlattices. Additionally, it enlarges the MAE of the films via the cooperation with a robust orbital hybridization between the Ir and Mn atoms. Our results indicate that the tricolor superlattices consisting of 3d and 5d oxides provide a powerful platform to study the MA and develop oxide-based spintronic devices.

قيم البحث

اقرأ أيضاً

190 - Ke Huang , Liang Wu , Maoyu Wang 2020
The ability to tune magnetic orders, such as magnetic anisotropy and topological spin texture, is desired in order to achieve high-performance spintronic devices. A recent strategy has been to employ interfacial engineering techniques, such as the in troduction of spin-correlated interfacial coupling, to tailor magnetic orders and achieve novel magnetic properties. We chose a unique polar-nonpolar LaMnO3/SrIrO3 superlattice because Mn (3d)/Ir (5d) oxides exhibit rich magnetic behaviors and strong spin-orbit coupling through the entanglement of their 3d and 5d electrons. Through magnetization and magnetotransport measurements, we found that the magnetic order is interface-dominated as the superlattice period is decreased. We were able to then effectively modify the magnetization, tilt of the ferromagnetic easy axis, and symmetry transition of the anisotropic magnetoresistance of the LaMnO3/SrIrO3 superlattice by introducing additional Mn (3d) and Ir (5d) interfaces. Further investigations using in-depth first-principles calculations and numerical simulations revealed that these magnetic behaviors could be understood by the 3d/5d electron correlation and Rashba spin-orbit coupling. The results reported here demonstrate a new route to synchronously engineer magnetic properties through the atomic stacking of different electrons, contributing to future applications.
We report a combined experimental and theoretical study of the unusual ferromagnetism in the one-dimensional copper-iridium oxide Sr$_3$CuIrO$_6$. Utilizing Ir $L_3$ edge resonant inelastic x-ray scattering, we reveal a large gap magnetic excitation spectrum. We find that it is caused by an unusual exchange anisotropy generating mechanism, namely, strong ferromagnetic anisotropy arising from antiferromagnetic superexchange, driven by the alternating strong and weak spin-orbit coupling on the $5d$ Ir and 3d Cu magnetic ions, respectively. From symmetry consideration, this novel mechanism is generally present in systems with edge-sharing Cu$^{2+}$O$_4$ plaquettes and Ir$^{4+}$O$_6$ octahedra. Our results point to unusual magnetic behavior to be expected in mixed 3d-5d transition-metal compounds via exchange pathways that are absent in pure 3d or 5d compounds.
55 - J. Laverock , M. Gu , V. Jovic 2019
Oxide heterostructures and superlattices have attracted a great deal of attention in recent years owing to the rich exotic properties encountered at their interfaces. We focus on the potential of tunable correlated oxides by investigating the spectra l function of the prototypical correlated metal SrVO3, using soft x-ray absorption spectroscopy (XAS) and resonant inelastic soft x-ray scattering (RIXS) to access both unoccupied and occupied electronic states, respectively. We demonstrate a remarkable level of tunability in the spectral function of SrVO3 by varying its thickness within the SrVO3/SrTiO3 superlattice, showing that the effects of electron correlation can be tuned from dominating the energy spectrum in a strongly correlated Mott-Hubbard insulator, towards a correlated metal. We show that the effects of dimensionality on the correlated properties of SrVO3 are augmented by interlayer coupling, yielding a highly flexible correlated oxide that may be readily married with other oxide systems.
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions driving novel emergent behavior. This is exemplified in 5d osm ates that host a metal-insulator transition (MIT) driven by magnetic order. Here we consider the most robust case, the 5d perovskite NaOsO3, and reveal a giant coupling between spin and phonon through a frequency shift of {Delta}{omega}=40 cm-1, the largest measured in any material. We identify the dominant octahedral breathing mode and show isosymmetry with spin ordering which induces dynamic charge disproportionation that sheds new light on the MIT. The occurrence of the dramatic spin-phonon-electronic coupling in NaOsO3 is due to a property common to all 5d materials: the large spatial extent of the 5d ion. This allows magnetism to couple to phonons on an unprecedented scale and consequently offers multiple new routes to enhanced coupled phenomena.
Manipulating the orbital state in a strongly correlated electron system is of fundamental and technological importance for exploring and developing novel electronic phases. Here, we report an unambiguous demonstration of orbital occupancy control bet ween t2g and eg multiplets in quasi-twodimensional transition metal oxide superlattices (SLs) composed of a Mott insulator LaCoO3 and a band insulator LaAlO3. As the LaCoO3 sublayer thickness approaches its fundamental limit (i.e. one unit-cell-thick), the electronic state of the SLs changed from a Mott insulator, in which both t2g and eg orbitals are partially filled, to a band insulator by completely filling (emptying) the t2g (eg) orbitals. We found the reduction of dimensionality has a profound effect on the electronic structure evolution, which is, whereas, insensitive to the epitaxial strain. The remarkable orbital controllability shown here offers a promising pathway for novel applications such as catalysis and photovoltaics, where the energy of d level is an essential parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا