ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailoring magnetic order via atomically stacking 3d/5d electrons

191   0   0.0 ( 0 )
 نشر من قبل Ke Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to tune magnetic orders, such as magnetic anisotropy and topological spin texture, is desired in order to achieve high-performance spintronic devices. A recent strategy has been to employ interfacial engineering techniques, such as the introduction of spin-correlated interfacial coupling, to tailor magnetic orders and achieve novel magnetic properties. We chose a unique polar-nonpolar LaMnO3/SrIrO3 superlattice because Mn (3d)/Ir (5d) oxides exhibit rich magnetic behaviors and strong spin-orbit coupling through the entanglement of their 3d and 5d electrons. Through magnetization and magnetotransport measurements, we found that the magnetic order is interface-dominated as the superlattice period is decreased. We were able to then effectively modify the magnetization, tilt of the ferromagnetic easy axis, and symmetry transition of the anisotropic magnetoresistance of the LaMnO3/SrIrO3 superlattice by introducing additional Mn (3d) and Ir (5d) interfaces. Further investigations using in-depth first-principles calculations and numerical simulations revealed that these magnetic behaviors could be understood by the 3d/5d electron correlation and Rashba spin-orbit coupling. The results reported here demonstrate a new route to synchronously engineer magnetic properties through the atomic stacking of different electrons, contributing to future applications.

قيم البحث

اقرأ أيضاً

We report a La2CuO4-like interlayer antiferromagnetic order in Sr2IrO4 films with large orthorhombic distortion (> 1.5%). The biaxial lattice strain in epitaxial heterostructures of Sr2IrO4/Ca3Ru2O7 lowers the crystal symmetry of Sr2IrO4 from tetrago nal (C4) to orthorhombic (C2), guiding the Ir 5d Jeff = 1/2 pseudospin moment parallel to the elongated b-axis via magnetic anisotropy. From resonant X-ray scattering experiments, we observed an antiferromagnetic order in the orthorhombic Sr2IrO4 film whose interlayer stacking pattern is inverted from that of the tetragonal Sr2IrO4 crystal. This interlayer stacking is similar to that of the orthorhombic La2CuO4, implying that the asymmetric interlayer exchange interaction along a and b-directions exceeds the anisotropic interlayer pseudo-dipolar interaction. Our result suggests that strain-induced distortion can provide a delicate knob for tuning the long-range magnetic order in quasi-two-dimensional systems by evoking the competition between the interlayer exchange coupling and the pseudo-dipolar interaction.
Manipulating magnetic anisotropy (MA) purposefully in transition metal oxides (TMOs) enables the development of oxide-based spintronic devices with practical applications. Here, we report a pathway to reversibly switch the lateral magnetic easy-axis via interfacial oxygen octahedral coupling (OOC) effects in 3d-5d tricolor superlattices, i.e. [SrIrO3,mRTiO3,SrIrO3,2La0.67Sr0.33MnO3]10 (RTiO3: SrTiO3 and CaTiO3). In the heterostructures, the anisotropy energy (MAE) is enhanced over one magnitude to ~106 erg/cm3 compared to La0.67Sr0.33MnO3 films. Moreover, the magnetic easy-axis is reversibly reoriented between (100)- and (110)-directions by changing the RTiO3. Using first-principles density functional theory calculations, we find that the SrIrO3 owns a large single-ion anisotropy due to its strong spin-orbit interaction. This anisotropy can be reversibly controlled by the OOC, then reorient the easy-axis of the superlattices. Additionally, it enlarges the MAE of the films via the cooperation with a robust orbital hybridization between the Ir and Mn atoms. Our results indicate that the tricolor superlattices consisting of 3d and 5d oxides provide a powerful platform to study the MA and develop oxide-based spintronic devices.
The interplay between crystal symmetry and charge stripe order in Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4 has been studied by means of single crystal x-ray diffraction. In contrast to tetragonal La1.67Sr0.33NiO4, these crystals are orthorhombic. The co rresponding distortion of the NiO2 planes is found to dictate the direction of the charge stripes, similar to the case of diagonal spin stripes in the insulating phase of La2-xSrxCuO4. In particular, diagonal stripes seem to always run along the short a-axis, which is the direction of the octahedral tilt axis. In contrast, no influence of the crystal symmetry on the charge stripe ordering temperature itself was observed, with T_CO 240K for La, Pr, and Nd. The coupling between lattice and stripe degrees of freedom allows one to produce macroscopic samples with unidirectional stripe order. In samples with stoichiometric oxygen content and a hole concentration of exactly 1/3, charge stripes exhibit a staggered stacking order with a period of three NiO2 layers, previously only observed with electron microscopy in domains of mesoscopic dimensions. Remarkably, this stacking order starts to melt about 40K below T_CO. The melting process can be described by mixing the ground state, which has a 3-layer stacking period, with an increasing volume fraction with a 2-layer stacking period.
We have examined the valence-band electronic structures of gold and silver in the same column in the periodic table with nominally filled d orbitals by means of a recently developed polarization-dependent hard x-ray photoemission. Contrary to a commo n expectation, it is found that the 5d-orbital electrons contribute prominently to the conduction electrons in gold while the conduction electrons in silver are to some extent free-electron-like with negligible 4d contribution, which could be related to a well-known fact that gold is more stable than silver in air. The 4d electron correlation effects are found to be essential for the conduction electron character in silver.
Novel interplay of spin-orbit coupling and electron correlations in complex Ir oxides recently emerged as a new paradigm for correlated electron physics. Because of a large spin-orbit coupling of ~0.5 eV, which is comparable to the transfer energy t and the crystal field splitting $Delta$ and Coulomb U, a variety of ground states including magnetic insulator, band insulator, semimetal and metal, shows up in a narrow materials phase space. Utilizing such subtle competition of the ground states, we successfully tailor a spin-orbital magnetic insulator out of a semimetal SrIrO$_3$ by controlling dimensionality using superlattice of [(SrIrO$_3$)$_m$, SrTiO$_3$] and show that a magnetic ordering triggers the transition to magnetic insulator. Those results can be described well by a first-principles calculation. This study is an important step towards the design and the realization of topological phases in complex Ir oxides with very strong spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا