ترغب بنشر مسار تعليمي؟ اضغط هنا

A Two-stage Complex Network using Cycle-consistent Generative Adversarial Networks for Speech Enhancement

145   0   0.0 ( 0 )
 نشر من قبل Guochen Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cycle-consistent generative adversarial networks (CycleGAN) have shown their promising performance for speech enhancement (SE), while one intractable shortcoming of these CycleGAN-based SE systems is that the noise components propagate throughout the cycle and cannot be completely eliminated. Additionally, conventional CycleGAN-based SE systems only estimate the spectral magnitude, while the phase is unaltered. Motivated by the multi-stage learning concept, we propose a novel two-stage denoising system that combines a CycleGAN-based magnitude enhancing network and a subsequent complex spectral refining network in this paper. Specifically, in the first stage, a CycleGAN-based model is responsible for only estimating magnitude, which is subsequently coupled with the original noisy phase to obtain a coarsely enhanced complex spectrum. After that, the second stage is applied to further suppress the residual noise components and estimate the clean phase by a complex spectral mapping network, which is a pure complex-valued network composed of complex 2D convolution/deconvolution and complex temporal-frequency attention blocks. Experimental results on two public datasets demonstrate that the proposed approach consistently surpasses previous one-stage CycleGANs and other state-of-the-art SE systems in terms of various evaluation metrics, especially in background noise suppression.



قيم البحث

اقرأ أيضاً

Existing generative adversarial networks (GANs) for speech enhancement solely rely on the convolution operation, which may obscure temporal dependencies across the sequence input. To remedy this issue, we propose a self-attention layer adapted from n on-local attention, coupled with the convolutional and deconvolutional layers of a speech enhancement GAN (SEGAN) using raw signal input. Further, we empirically study the effect of placing the self-attention layer at the (de)convolutional layers with varying layer indices as well as at all of them when memory allows. Our experiments show that introducing self-attention to SEGAN leads to consistent improvement across the objective evaluation metrics of enhancement performance. Furthermore, applying at different (de)convolutional layers does not significantly alter performance, suggesting that it can be conveniently applied at the highest-level (de)convolutional layer with the smallest memory overhead.
The speech enhancement task usually consists of removing additive noise or reverberation that partially mask spoken utterances, affecting their intelligibility. However, little attention is drawn to other, perhaps more aggressive signal distortions l ike clipping, chunk elimination, or frequency-band removal. Such distortions can have a large impact not only on intelligibility, but also on naturalness or even speaker identity, and require of careful signal reconstruction. In this work, we give full consideration to this generalized speech enhancement task, and show it can be tackled with a time-domain generative adversarial network (GAN). In particular, we extend a previous GAN-based speech enhancement system to deal with mixtures of four types of aggressive distortions. Firstly, we propose the addition of an adversarial acoustic regression loss that promotes a richer feature extraction at the discriminator. Secondly, we also make use of a two-step adversarial training schedule, acting as a warm up-and-fine-tune sequence. Both objective and subjective evaluations show that these two additions bring improved speech reconstructions that better match the original speaker identity and naturalness.
Adversarial loss in a conditional generative adversarial network (GAN) is not designed to directly optimize evaluation metrics of a target task, and thus, may not always guide the generator in a GAN to generate data with improved metric scores. To ov ercome this issue, we propose a novel MetricGAN approach with an aim to optimize the generator with respect to one or multiple evaluation metrics. Moreover, based on MetricGAN, the metric scores of the generated data can also be arbitrarily specified by users. We tested the proposed MetricGAN on a speech enhancement task, which is particularly suitable to verify the proposed approach because there are multiple metrics measuring different aspects of speech signals. Moreover, these metrics are generally complex and could not be fully optimized by Lp or conventional adversarial losses.
Speech enhancement aims to obtain speech signals with high intelligibility and quality from noisy speech. Recent work has demonstrated the excellent performance of time-domain deep learning methods, such as Conv-TasNet. However, these methods can be degraded by the arbitrary scales of the waveform induced by the scale-invariant signal-to-noise ratio (SI-SNR) loss. This paper proposes a new framework called Time-domain Speech Enhancement Generative Adversarial Network (TSEGAN), which is an extension of the generative adversarial network (GAN) in time-domain with metric evaluation to mitigate the scaling problem, and provide model training stability, thus achieving performance improvement. In addition, we provide a new method based on objective function mapping for the theoretical analysis of the performance of Metric GAN, and explain why it is better than the Wasserstein GAN. Experiments conducted demonstrate the effectiveness of our proposed method, and illustrate the advantage of Metric GAN.
343 - Ke Wang , Junbo Zhang , Sining Sun 2018
We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks of a work to examine the ir ability in speech dereverberation and the advantages of using GANs have not been fully established. In this paper, we provide deep investigations in the use of GAN-based dereverberation front-end in ASR. First, we study the effectiveness of different dereverberation networks (the generator in GAN) and find that LSTM leads a significant improvement as compared with feed-forward DNN and CNN in our dataset. Second, further adding residual connections in the deep LSTMs can boost the performance as well. Finally, we find that, for the success of GAN, it is important to update the generator and the discriminator using the same mini-batch data during training. Moreover, using reverberant spectrogram as a condition to discriminator, as suggested in previous studies, may degrade the performance. In summary, our GAN-based dereverberation front-end achieves 14%-19% relative CER reduction as compared to the baseline DNN dereverberation network when tested on a strong multi-condition training acoustic model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا