ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of a tidal disruption event in GSN 069 from the abnormal carbon and nitrogen abundance ratio

73   0   0.0 ( 0 )
 نشر من قبل Zhenfeng Sheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GSN 069 is an ultra-soft X-ray active galactic nucleus that previously exhibited a huge X-ray outburst and a subsequent long term decay. It has recently presented X-ray quasi-periodic eruptions (QPEs). We report the detection of strong nitrogen lines but weak or undetectable carbon lines in its far ultraviolet spectrum. With a detailed photoionization model, we use the civ/ iv ratio and other ratios between nitrogen lines to constrain the [C/N] abundance of GSN 069 to be from $-3.33$ to $-1.91$. We argue that a partially disrupted red giant star can naturally explain the abnormal C/N abundance in the UV spectrum, while the surviving core orbiting the black hole might produce the QPEs.



قيم البحث

اقرأ أيضاً

48 - Andrew King 2020
I suggest that the quasiperiodic ultrasoft X-ray eruptions recently observed from the galaxy GSN 069 may result from accretion from a low-mass white dwarf in a highly eccentric orbit about its central black hole. At 0.21M_sun, this star was probably the core of a captured red giant. Such events should occur in significant numbers as less extreme outcomes of whatever process leads to tidal disruption events. I show that gravitational radiation losses can drive the observed mass transfer rate, and that the precession of the white dwarf orbit may be detectable in X-rays as a superorbital quasiperiod P_super ~ 2 d. The very short lifetime of the current event, and the likelihood that similar ones involving more massive stars would be less observable, together suggest that stars may transfer mass to the low-mass SMBH in this and similar galaxies at a total rate potentially making a significant contribution to their masses. A similar or even much greater inflow rate would be unobservable in most galaxies. I discuss the implications for SMBH mass growth.
Radio observations of tidal disruption events (TDEs) - when a star is tidally disrupted by a supermassive black hole (SMBH) - provide a unique laboratory for studying outflows in the vicinity of SMBHs and their connection to accretion onto the SMBH. Radio emission has been detected in only a handful of TDEs so far. Here, we report the detection of delayed radio flares from an optically-discovered TDE. Our prompt radio observations of the TDE ASASSN-15oi showed no radio emission until the detection of a flare six months later, followed by a second and brighter flare, years later. We find that the standard scenario, in which an outflow is launched briefly after the stellar disruption, is unable to explain the combined temporal and spectral properties of the delayed flare. We suggest that the flare is due to the delayed ejection of an outflow, perhaps following a transition in accretion states. Our discovery motivates observations of TDEs at various timescales and highlights a need for new models.
77 - C.S. Kochanek 2015
The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average be cause it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle -- stars more massive than the Sun quickly show an increase in their average N/C ratio by factors of 3-10. Because low mass stars evolve slowly and high mass stars are rare, TDEs showing high N/C will almost all be due to 1-2Msun stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen rich quasars and also explains the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.
ASASSN-14ae is a candidate tidal disruption event (TDE) found at the center of SDSS J110840.11+340552.2 ($dsimeq200$~Mpc) by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present ground-based and Swift follow-up photometric and spectrosco pic observations of the source, finding that the transient had a peak luminosity of $Lsimeq8times10^{43}$~erg~s$^{-1}$ and a total integrated energy of $Esimeq1.7times10^{50}$ ergs radiated over the $sim5$ months of observations presented. The blackbody temperature of the transient remains roughly constant at $Tsim20,000$~K while the luminosity declines by nearly 1.5 orders of magnitude during this time, a drop that is most consistent with an exponential, $Lpropto e^{-t/t_0}$ with $t_0simeq39$~days. The source has broad Balmer lines in emission at all epochs as well as a broad He II feature emerging in later epochs. We compare the color and spectral evolution to both supernovae and normal AGN to show that { ame} does not resemble either type of object and conclude that a TDE is the most likely explanation for our observations. At $z=0.0436$, ASASSN-14ae is the lowest-redshift TDE candidate discovered at optical/UV wavelengths to date, and we estimate that ASAS-SN may discover $0.1 - 3$ of these events every year in the future.
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10 to 1000 Myr ago, indicating that TDEs arise at differ ent times in their hosts post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5-10% for most hosts, not enough to explain the observed 30-200x boost in TDE rates, suggesting that the hosts core stellar concentration is more important. TDE hosts have stellar masses 10^9.4 - 10^10.3 Msun, consistent with the SDSS volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10^5.5 - 10^7.5 Msun. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا