ترغب بنشر مسار تعليمي؟ اضغط هنا

GSN 069 -- A Tidal Disruption Near-Miss

49   0   0.0 ( 0 )
 نشر من قبل Andrew King
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew King




اسأل ChatGPT حول البحث

I suggest that the quasiperiodic ultrasoft X-ray eruptions recently observed from the galaxy GSN 069 may result from accretion from a low-mass white dwarf in a highly eccentric orbit about its central black hole. At 0.21M_sun, this star was probably the core of a captured red giant. Such events should occur in significant numbers as less extreme outcomes of whatever process leads to tidal disruption events. I show that gravitational radiation losses can drive the observed mass transfer rate, and that the precession of the white dwarf orbit may be detectable in X-rays as a superorbital quasiperiod P_super ~ 2 d. The very short lifetime of the current event, and the likelihood that similar ones involving more massive stars would be less observable, together suggest that stars may transfer mass to the low-mass SMBH in this and similar galaxies at a total rate potentially making a significant contribution to their masses. A similar or even much greater inflow rate would be unobservable in most galaxies. I discuss the implications for SMBH mass growth.



قيم البحث

اقرأ أيضاً

GSN 069 is an ultra-soft X-ray active galactic nucleus that previously exhibited a huge X-ray outburst and a subsequent long term decay. It has recently presented X-ray quasi-periodic eruptions (QPEs). We report the detection of strong nitrogen lines but weak or undetectable carbon lines in its far ultraviolet spectrum. With a detailed photoionization model, we use the civ/ iv ratio and other ratios between nitrogen lines to constrain the [C/N] abundance of GSN 069 to be from $-3.33$ to $-1.91$. We argue that a partially disrupted red giant star can naturally explain the abnormal C/N abundance in the UV spectrum, while the surviving core orbiting the black hole might produce the QPEs.
Tidal disruption events occur rarely in any individual galaxy. Over the last decade, however, time-domain surveys have begun to accumulate statistical samples of these flares. What dynamical processes are responsible for feeding stars to supermassive black holes? At what rate are stars tidally disrupted in realistic galactic nuclei? What may we learn about supermassive black holes and broader astrophysical questions by estimating tidal disruption event rates from observational samples of flares? These are the questions we aim to address in this Chapter, which summarizes current theoretical knowledge about rates of stellar tidal disruption, and compares theoretical predictions to the current state of observations.
112 - C.S. Kochanek 2016
We survey the properties of stars destroyed in TDEs as a function of BH mass, stellar mass and evolutionary state, star formation history and redshift. For Mbh<10^7Msun, the typical TDE is due to a M*~0.3Msun M-dwarf, although the mass function is re latively flat for $M*<Msun. The contribution from older main sequence stars and sub-giants is small but not negligible. From Mbh~10^7.5-10^8.5Msun, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by Mbh~10^6.0-10^7.5Msun BHs with roughly Eddington peak accretion rates. The typical fall back time is relatively long, with 16% having Tfb<10^(-1) years (37 days), and 84% having longer time scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer Tfb, which seems very plausible if Tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time scale TDEs in smaller galaxies, and longer time scale TDEs in more massive galaxies are likely to be rewarded.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
75 - R.D. Saxton 2019
Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near-real time data from XMM-Newton slews and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was det ected from the galaxy XMMSL2 J144605.0+685735 (a.k.a. 2MASX 14460522+6857311), a factor 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ~100 days and then fell by a factor 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V bands) have been roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of $127pm{4}$ Mpc (z=$0.029pm{0.001}$) with a spectrum consisting of a young stellar population of age 1-5 Gyr, an older population and a total stellar mass of ~6 x $10^{9}$ solar masses. The bolometric luminosity peaked at L bol ~ $10^{43}$ ergs s$^{-1}$ with an X-ray spectrum that may be modeled by a power-law of $Gamma$~2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10$mu$Jy, which limits the total energy of a hypothetical off-axis jet to E < 5 x $10^{50}$ ergs. The independent behaviour of the optical, UV and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disk and the X-rays from Compton upscattering of these disk photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا