ﻻ يوجد ملخص باللغة العربية
In the hydrodynamic model description of heavy ion collisions, the elliptic flow $v_2$ and triangular flow $v_3$ are sensitive to the quadrupole deformation $beta_2$ and octupole deformation $beta_3$ of the colliding nuclei. The relations between $v_n$ and $beta_n$ have recently been clarified and were found to follow a simple parametric form. The STAR Collaboration have just published precision $v_n$ data from isobaric $^{96}$Ru+$^{96}$Ru and $^{96}$Zr+$^{96}$Zr collisions, where they observe large differences in central collisions $v_{2,mathrm{Ru}}>v_{2,mathrm{Zr}}$ and $v_{3,mathrm{Ru}}<v_{3,mathrm{Zr}}$. Using a transport model simulation, we show that these orderings are a natural consequence of $beta_{2,mathrm{Ru}}ggbeta_{2,mathrm{Zr}}$ and $beta_{3,mathrm{Ru}}llbeta_{3,mathrm{Zr}}$. We are able to reproduce the centrality dependence of the $v_2$ ratio qualitatively and $v_3$ ratio quantitatively, and extract values of $beta_2$ and $beta_3$ that are consistent with those measured at low energy nuclear structure experiments. STAR data provide the first direct evidence of strong octupole correlations in the ground state of $^{96}$Zr in heavy ion collisions. Our analysis demonstrates that flow measurements in high-energy heavy ion collisions, especially using isobaric systems, are a new precision tool to study nuclear structure physics.
The production of $rm{^3_Lambda H}$ and $rm{{^3_{overline Lambda}overline H}}$, as well as $rm{^3H}$, $rm{{^3overline H}}$, $rm{^3He}$, and $rm{{^3overline {He}}}$ are studied in central collisions of isobars $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_
Anomalous Viscous Fluid Dynamics (AVFD) model calculations for $mathrm{^{96}_{44}Ru +, ^{96}_{44}Ru}$ and $mathrm{^{96}_{40}Zr +, ^{96}_{40}Zr}$ collisions ($sqrt{s_{rm NN}} = 200$ GeV) are used in concert with a charge-sensitive correlator, to test
The nature of $J^{pi}=1^-$ levels of $^{96}$Zr below the $beta$-decay $Q_{beta}$ value of $^{96}$Y has been investigated in high-resolution $gamma$-ray spectroscopy following the $beta$ decay as well as in a campaign of inelastic photon scattering ex
Fusion data for $^{40}$Ca+$^{96}$Zr are analyzed by coupled-channels calculations that are based on a standard Woods-Saxon potential and include couplings to multiphonon excitations and transfer channels. The couplings to multiphonon excitations are
We discuss the predictions of the large scale calculations using the realistic realisation of the phenomenological nuclear mean-field theory. Calculations indicate that certain Zirconium nuclei are tetrahedral-symmetric in their ground-states. After