ﻻ يوجد ملخص باللغة العربية
We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $ell$ in an infinite heterogeneous medium, in a situation where the medium is only known in a box of diameter $Lggell$ around the support of the charge. We propose a boundary condition that with overwhelming probability is (near) optimal with respect to scaling in terms of $ell$ and $L$, in the setting where the medium is a sample from a stationary ensemble with a finite range of dependence (set to be unity and with the assumption that $ell gg 1$). The boundary condition is motivated by quantitative stochastic homogenization that allows for a multipole expansion [BGO20]. This work extends [LO21] from two to three dimensions, and thus we need to take quadrupoles, next to dipoles, into account. This in turn relies on stochastic estimates of second-order, next to first-order, correctors. These estimates are provided for finite range ensembles under consideration, based on an extension of the semi-group approach of [GO15].
We consider a free boundary problem on three-dimensional cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. Combining analysis and computer-assisted proof, we show that when c is less
We develop a general strategy in order to implement (approximate) discrete transparent boundary conditions for finite difference approximations of the two-dimensional transport equation. The computational domain is a rectangle equipped with a Cartesi
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs
We propose and analyze an optimal mass transport method for a random genetic drift problem driven by a Moran process under weak-selection. The continuum limit, formulated as a reaction-advection-diffusion equation known as the Kimura equation, inheri
We present an approach to handle Dirichlet type nonlocal boundary conditions for nonlocal diffusion models with a finite range of nonlocal interactions. Our approach utilizes a linear extrapolation of prescribed boundary data. A novelty is, instead o