ﻻ يوجد ملخص باللغة العربية
The automatic verification of document authorships is important in various settings. Researchers are for example judged and compared by the amount and impact of their publications and public figures are confronted by their posts on social media platforms. Therefore, it is important that authorship information in frequently used web services and platforms is correct. The question whether a given document is written by a given author is commonly referred to as authorship verification (AV). While AV is a widely investigated problem in general, only few works consider settings where the documents are short and written in a rather uniform style. This makes most approaches unpractical for online databases and knowledge graphs in the scholarly domain. Here, authorships of scientific publications have to be verified, often with just abstracts and titles available. To this point, we present our novel approach LG4AV which combines language models and graph neural networks for authorship verification. By directly feeding the available texts in a pre-trained transformer architecture, our model does not need any hand-crafted stylometric features that are not meaningful in scenarios where the writing style is, at least to some extent, standardized. By the incorporation of a graph neural network structure, our model can benefit from relations between authors that are meaningful with respect to the verification process. For example, scientific authors are more likely to write about topics that are addressed by their co-authors and twitter users tend to post about the same subjects as people they follow. We experimentally evaluate our model and study to which extent the inclusion of co-authorships enhances verification decisions in bibliometric environments.
Graph Neural Networks (GNNs) are the predominant technique for learning over graphs. However, there is relatively little understanding of why GNNs are successful in practice and whether they are necessary for good performance. Here, we show that for
The increasing concern with misinformation has stimulated research efforts on automatic fact checking. The recently-released FEVER dataset introduced a benchmark fact-verification task in which a system is asked to verify a claim using evidential sen
This paper presents a specification-guided safety verification method for feedforward neural networks with general activation functions. As such feedforward networks are memoryless, they can be abstractly represented as mathematical functions, and th
While many existing graph neural networks (GNNs) have been proven to perform $ell_2$-based graph smoothing that enforces smoothness globally, in this work we aim to further enhance the local smoothness adaptivity of GNNs via $ell_1$-based graph smoot
Existing graph neural networks (GNNs) largely rely on node embeddings, which represent a node as a vector by its identity, type, or content. However, graphs with unlabeled nodes widely exist in real-world applications (e.g., anonymized social network