ترغب بنشر مسار تعليمي؟ اضغط هنا

The LSPE-Strip beams

71   0   0.0 ( 0 )
 نشر من قبل Sabrina Realini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe the design and characterization of the optical system of LSPE/Strip, a coherent polarimeter array that will observe the microwave sky from the Teide Observatory in Tenerife in two frequency bands centred at 43 and 95 GHz through a dual-reflector crossed-Dragone telescope of 1.5 m aperture. In general, optical systems composed by a telescopefeed array assembly have non-idealities that might limit their ability to perform high-precision measurements. It is thus necessary to understand, characterize and properly control these systematic effects. For this reason, we performed electromagnetic simulations to characterize angular resolution, sidelobes, main beam symmetry, polarization purity and feedhorns orientation. The results presented in this paper will be an essential input for further optical studies and for the LSPE/Strip data analysis. Ultimately, they will be used to assess the impact of optical systematic effects on the scientific results.



قيم البحث

اقرأ أيضاً

In this paper we discuss the design, manufacturing and characterization of the feed horn array of the Strip instrument of the Large Scale Polarization Explorer (LSPE) experiment. Strip is a microwave telescope, operating in the Q- and W-band, for the observation of the polarized emissions from the sky in a large fraction (about 37%) of the Northern hemisphere with subdegree angular resolution. The Strip focal plane is populated by forty-nine Q-band and six W-band corrugated horns, each feeding a cryogenically cooled polarimeter for the detection of the Stokes $Q$ and $U$ components of the polarized signal from the sky. The Q-band channel is designed to accurately monitor Galactic polarized synchrotron emission, while the combination of Q- and W-band will allow the study of atmospheric effects at the observation site, the Observatorio del Teide, in Tenerife. In this paper we focus on the development of the Strip corrugated feed horns, including design requirements, engineering and manufacturing, as well as detailed characterization and performance verification.
The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.
In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Sc ale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.
[Abridged] The measurement of the polarization of the Cosmic Microwave Background radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial B-modes, could reveal the presence of gravitational waves in the early Universe. The detection of such component is at the moment the most promising technique to probe the inflationary theory describing the very early evolution of the Universe. We present the updated performance forecast of the Large Scale Polarization Explorer (LSPE), a program dedicated to the measurement of the CMB polarization. LSPE is composed of two instruments: Strip, a radiometer-based telescope on the ground in Tenerife, and SWIPE (Short-Wavelength Instrument for the Polarization Explorer) a bolometer-based instrument designed to fly on a winter arctic stratospheric long-duration balloon. The program is among the few dedicated to observation of the Northern Hemisphere, while most of the international effort is focused into ground-based observation in the Southern Hemisphere. Measurements are currently scheduled in Winter 2021/22 for SWIPE, with a flight duration up to 15 days, and in Summer 2021 with two years observations for Strip. We describe the main features of the two instruments, identifying the most critical aspects of the design, in terms of impact into performance forecast. We estimate the expected sensitivity of each instrument and propagate their combined observing power to the sensitivity to cosmological parameters, including the effect of scanning strategy, component separation, residual foregrounds and partial sky coverage. We also set requirements on the control of the most critical systematic effects and describe techniques to mitigate their impact. LSPE can reach a sensitivity in tensor-to-scalar ratio of $sigma_r<0.01$, and improve constrains on other cosmological parameters.
In this paper we discuss the latest developments of the STRIP instrument of the Large Scale Polarization Explorer (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the B-modes of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the Observatorio del Teide in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا