ﻻ يوجد ملخص باللغة العربية
In the sixth-generation (6G) era, emerging large-scale computing based applications (for example processing enormous amounts of images in real-time in autonomous driving) tend to lead to excessive energy consumption for the end users, whose devices are usually energy-constrained. In this context, energy-efficiency becomes a critical challenge to be solved for harnessing these promising applications to realize green 6G networks. As a remedy, reconfigurable intelligent surfaces (RIS) have been proposed for improving the energy efficiency by beneficially reconfiguring the wireless propagation environment. In conventional RIS solutions, however, the received signal-to-interference-plus-noise ratio (SINR) sometimes may even become degraded. This is because the signals impinging upon an RIS are typically contaminated by interfering signals which are usually dynamic and unknown. To address this issue, `learning the properties of the surrounding spectral environment is a promising solution, motivating the convergence of artificial intelligence and spectrum sensing, termed here as spectrum learning (SL). Inspired by this, we develop an SL-aided RIS framework for intelligently exploiting the inherent characteristics of the radio frequency (RF) spectrum for green 6G networks. Given the proposed framework, the RIS controller becomes capable of intelligently `{think-and-decide} whether to reflect or not the incident signals. Therefore, the received SINR can be improved by dynamically configuring the binary ON-OFF status of the RIS elements. The energy-efficiency benefits attained are validated with the aid of a specific case study. Finally, we conclude with a list of promising future research directions.
Reconfigurable intelligent surface (RIS) has become a promising technology for enhancing the reliability of wireless communications, which is capable of reflecting the desired signals through appropriate phase shifts. However, the intended signals th
Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs), are regarded as one of the most promising and revolutionizing techniques for enhancing the spectrum and/or energy efficiency of wireless systems. These devices are
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for fut
Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided mu
Reconfigurable intelligent surface (RIS) technology has recently emerged as a spectral- and cost-efficient approach for wireless communications systems. However, existing hand-engineered schemes for passive beamforming design and optimization of RIS,