ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning-based Reconfigurable Intelligent Surface-aided MIMO Systems

134   0   0.0 ( 0 )
 نشر من قبل Nhan Thanh Nguyen
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reconfigurable intelligent surface (RIS) technology has recently emerged as a spectral- and cost-efficient approach for wireless communications systems. However, existing hand-engineered schemes for passive beamforming design and optimization of RIS, such as the alternating optimization (AO) approaches, require a high computational complexity, especially for multiple-input-multiple-output (MIMO) systems. To overcome this challenge, we propose a low-complexity unsupervised learning scheme, referred to as learning-phase-shift neural network (LPSNet), to efficiently find the solution to the spectral efficiency maximization problem in RIS-aided MIMO systems. In particular, the proposed LPSNet has an optimized input structure and requires a small number of layers and nodes to produce efficient phase shifts for the RIS. Simulation results for a 16x2 MIMO system assisted by an RIS with 40 elements show that the LPSNet achieves 97.25% of the SE provided by the AO counterpart with more than a 95% reduction in complexity.



قيم البحث

اقرأ أيضاً

This article aims to reduce huge pilot overhead when estimating the reconfigurable intelligent surface (RIS) relayed wireless channel. Motivated by the compelling grasp of deep learning in tackling nonlinear mapping problems, the proposed approach on ly activates a part of RIS elements and utilizes the corresponding cascaded channel estimate to predict another part. Through a synthetic deep neural network (DNN), the direct channel and active cascaded channel are first estimated sequentially, followed by the channel prediction for the inactive RIS elements. A three-stage training strategy is developed for this synthetic DNN. From simulation results, the proposed deep learning based approach is effective in reducing the pilot overhead and guaranteeing the reliable estimation accuracy.
109 - Wenjing Yan , Xiaojun Yuan 2021
Reconfigurable intelligent surface (RIS) based reflection modulation has been considered as a promising information delivery mechanism, and has the potential to realize passive information transfer of a RIS without consuming any additional radio freq uency chain and time/frequency/energy resources. The existing on-off reflection modulation (ORM) schemes are based on manipulating the ``on/off states of RIS elements, which may lead to the degradation of RIS reflection efficiency. This paper proposes a frequency reflection modulation (FRM) method for RIS-aided OFDM systems. The FRM-OFDM scheme modulates the frequency of the incident electromagnetic waves, and the RIS information is embedded in the frequency-hoping states of RIS elements. Unlike the ORM-OFDM scheme, the FRM-OFDM scheme can achieve higher reflection efficiency, since the latter does not turn off any reflection element in reflection modulation. We propose a block coordinate descent (BCD) algorithm to maximize the user achievable rate for the FRM-OFDM system by jointly optimizing the phase shift of the RIS and the power allocation at the transmitter. Further, we design a bilinear message passing (BMP) algorithm for the bilinear recovery of both the user symbols and the RIS data. Numerical simulations have verified the efficiency of the designed BCD algorithm for system optimization and the BMP algorithm for signal detection, as well as the superiority of the proposed FRM-OFDM scheme over the ORM-OFDM scheme.
126 - Tong Bai , Cunhua Pan , Chao Han 2021
Given the proliferation of wireless sensors and smart mobile devices, an explosive escalation of the volume of data is anticipated. However, restricted by their limited physical sizes and low manufacturing costs, these wireless devices tend to have l imited computational capabilities and battery lives. To overcome this limitation, wireless devices may offload their computational tasks to the nearby computing nodes at the network edge in mobile edge computing (MEC). At the time of writing, the benefits of MEC systems have not been fully exploited, predominately because the computation offloading link is still far from perfect. In this article, we propose to enhance MEC systems by exploiting the emerging technique of reconfigurable intelligent surfaces (RIS), which are capable of `reconfiguring the wireless propagation environments, hence enhancing the offloading links. The benefits of RISs can be maximized by jointly optimizing both the RISs as well as the communications and computing resource allocations of MEC systems. Unfortunately, this joint optimization imposes new research challenges on the system design. Against this background, this article provides an overview of RIS-assisted MEC systems and highlights their four use cases as well as their design challenges and solutions. Finally, their performance is characterized with the aid of a specific case study, followed by a range of future research ideas.
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived based on maximum ratio transmission (MRT) and additive quantization noise model (AQNM), and the rate maximization problem is solved by particle swarm optimization (PSO) method under both continuous phase shifts (CPSs) and discrete phase shifts (DPSs) at the RIS. Simulation results show that the downlink sum achievable rate tends to a constant with the increase of the number of quantization bits of DACs, and four quantization bits are enough to capture a large portion of the performance of the ideal perfect DACs case.
In this paper, we explore optimization-based and data-driven solutions in a reconfigurable intelligent surface (RIS)-aided multi-user mobile edge computing (MEC) system, where the user equipment (UEs) can partially offload their computation tasks to the access point (AP). We aim at maximizing the total completed task-input bits (TCTB) of all UEs with limited energy budgets during a given time slot, through jointly optimizing the RIS reflecting coefficients, the APs receive beamforming vectors, and the UEs energy partition strategies for local computing and offloading. A three-step block coordinate descending (BCD) algorithm is first proposed to effectively solve the non-convex TCTB maximization problem with guaranteed convergence. In order to reduce the computational complexity and facilitate lightweight online implementation of the optimization algorithm, we further construct two deep learning architectures. The first one takes channel state information (CSI) as input, while the second one exploits the UEs locations only for online inference. The two data-driven approaches are trained using data samples generated by the BCD algorithm via supervised learning. Our simulation results reveal a close match between the performance of the optimization-based BCD algorithm and the low-complexity learning-based architectures, all with superior performance to existing schemes in both cases with perfect and imperfect input features. Importantly, the location-only deep learning method is shown to offer a particularly practical and robust solution alleviating the need for CSI estimation and feedback when line-of-sight (LoS) direct links exist between UEs and the AP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا