ﻻ يوجد ملخص باللغة العربية
In this paper, we propose and analyze a first-order and a second-order time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. The proposed schemes are based on an auxiliary variable approach for the Allen-Cahn equation and delicate treatment of the terms coupling the Allen-Cahn equation and temperature equation. The idea of the former is to introduce suitable auxiliary variables to facilitate construction of high order stable schemes for a large class of gradient flows. We propose a new technique to treat the coupling terms involved in the crystal growth model and introduce suitable stabilization terms to result in totally decoupled schemes, which satisfy a discrete energy law without affecting the convergence order. A delicate implementation demonstrates that the proposed schemes can be realized in a very efficient way. That is, it only requires solving four linear elliptic equations and a simple algebraic equation at each time step. A detailed comparison with existing schemes is given, and the advantage of the new schemes are emphasized. As far as we know this is the first second-order scheme that is totally decoupled, linear, unconditionally stable for the dendritic crystal growth model with variable mobility parameter.
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 20
The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions (PNP-FBV) describe ion transport with Faradaic reactions, and have applications in a number of fields. In this article, we develop an adaptive time-steppin
In this paper we present two unconditionally energy stable finite difference schemes for the Modified Phase Field Crystal (MPFC) equation, a sixth-order nonlinear damped wave equation, of which the purely parabolic Phase Field Crystal (PFC) model can
Simulation of complex dynamical systems arising in many applications is computationally challenging due to their size and complexity. Model order reduction, machine learning, and other types of surrogate modeling techniques offer cheaper and simpler
In this paper, we propose and analyze a time-stepping method for the time fractional Allen-Cahn equation. The key property of the proposed method is its unconditional stability for general meshes, including the graded mesh commonly used for this type