ترغب بنشر مسار تعليمي؟ اضغط هنا

Double Field Theory as the Double Copy of Yang-Mills

73   0   0.0 ( 0 )
 نشر من قبل Felipe Diaz-Jaramillo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that double field theory naturally arises from the color-kinematic double copy of Yang-Mills theory. A precise double copy prescription for the Yang-Mills action at quadratic and cubic order is provided that yields the double field theory action in which the duality invariant dilaton has been integrated out. More precisely, at quadratic order this yields the gauge invariant double field theory, while at cubic order it yields the cubic double field theory action subject to a gauge condition that originates from Siegel gauge in string field theory.

قيم البحث

اقرأ أيضاً

We compute the classical effective action of color charges moving along worldlines by integrating out the Yang-Mills gauge field to next-to-leading order in the coupling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy constructio n known from quantum scattering amplitudes is then applied to the Feynman integrands, yielding the prediction for the classical effective action of point masses in dilaton gravity. We check the validity of the result by independently constructing the effective action in dilaton gravity employing field redefinitions and gauge choices that greatly simplify the perturbative construction. Complete agreement is found at next-to-leading order. Finally, upon performing the post-Newtonian expansion of our result, we find agreement with the corresponding action of scalar-tensor theories known from the literature. Our results represent a proof of concept for the classical double-copy construction of the gravitational effective action and provides another application of a BCJ-like double copy beyond scattering amplitudes.
92 - Josua Faller , Jan Plefka 2018
All positive helicity four-point gluon-graviton amplitudes in Einstein-Yang-Mills theory coupled to a dilaton and axion field are computed at the leading one-loop order using colour-kinematics duality. In particular, all relevant contributions in the gravitational and gauge coupling are established. This extends a previous generalized unitarity based computation beyond the leading terms in the gravitational coupling $kappa$. The resulting purely rational expressions take very compact forms. The previously seen vanishing of the single-graviton-three-gluon amplitude at leading order in $kappa$ is seen to be lifted at order $kappa^{3}$.
101 - Siddharth G. Prabhu 2020
We formulate a version of the double copy for classical fields in curved spacetimes. We provide a correspondence between perturbative solutions to the bi-adjoint scalar equations and those of the Yang-Mills equations in position space. At the linear level, we show that there exists a map between these solutions for maximally symmetric spacetime backgrounds, that provides every Yang-Mills solution by the action of an appropriate differential operator on a bi-adjoint scalar solution. Given the existence of a linearized map, we show that it is possible to cast the solutions of the Yang-Mills equations at arbitrary perturbation order in terms of the corresponding bi-adjoint scalar solutions. This all-order map is reminiscent of the flat space BCJ double copy, and works for any curved spacetime where the perturbative expansion holds. We show that these results have the right flat space limit, and that the correspondence is agnostic to the choice of gauge.
We consider double-winding, triple-winding and multiple-winding Wilson loops in the $SU(N)$ Yang-Mills gauge theory. We examine how the area law falloff of the vacuum expectation value of a multiple-winding Wilson loop depends on the number of color $N$. In sharp contrast to the difference-of-areas law recently found for a double-winding $SU(2)$ Wilson loop average, we show irrespective of the spacetime dimensionality that a double-winding $SU(3)$ Wilson loop follows a novel area law which is neither difference-of-areas nor sum-of-areas law for the area law falloff and that the difference-of-areas law is excluded and the sum-of-areas law is allowed for $SU(N)$ ($N ge 4$), provided that the string tension obeys the Casimir scaling for the higher representations. Moreover, we extend these results to arbitrary multi-winding Wilson loops. Finally, we argue that the area law follows a novel law, which is neither sum-of-areas nor difference-of-areas law when $Nge 3$. In fact, such a behavior is exactly derived in the $SU(N)$ Yang-Mills theory in the two-dimensional spacetime.
A characteristic value formulation of the Weyl double copy leads to an asymptotic formulation. We find that the Weyl double copy holds asymptotically in cases where the full solution is algebraically general, using rotating STU supergravity black hol es as an example. The asymptotic formulation provides clues regarding the relation between asymptotic symmetries that follows from the double copy. Using the C-metric as an example, we show that a previous interpretation of this gravity solution as a superrotation has a single copy analogue relating the appropriate Lienard-Wiechert potential to a large gauge transformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا