ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Weyl Double Copy

195   0   0.0 ( 0 )
 نشر من قبل David Peinador Veiga
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A characteristic value formulation of the Weyl double copy leads to an asymptotic formulation. We find that the Weyl double copy holds asymptotically in cases where the full solution is algebraically general, using rotating STU supergravity black holes as an example. The asymptotic formulation provides clues regarding the relation between asymptotic symmetries that follows from the double copy. Using the C-metric as an example, we show that a previous interpretation of this gravity solution as a superrotation has a single copy analogue relating the appropriate Lienard-Wiechert potential to a large gauge transformation.

قيم البحث

اقرأ أيضاً

We establish the status of the Weyl double copy relation for radiative solutions of the vacuum Einstein equations. We show that all type N vacuum solutions, which describe the radiation region of isolated gravitational systems with appropriate fall-o ff for the matter fields, admit a degenerate Maxwell field that squares to give the Weyl tensor. The converse statement also holds, i.e. if there exists a degenerate Maxwell field on a curved background, then the background is type N. This relation defines a scalar that satisfies the wave equation on the background. We show that for non-twisting radiative solutions, the Maxwell field and the scalar also satisfy the Maxwell equation and the wave equation on Minkowski spacetime. Hence, non-twisting solutions have a straightforward double copy interpretation.
161 - Tim Adamo , Uri Kol 2021
We give two double copy prescriptions which construct asymptotically flat solutions in gravity from asymptotically flat gauge fields. The first prescription applies to radiative fields, which are non-linear vacuum solutions determined by characterist ic data at null infinity. For any two such radiative gauge fields (linear or non-linear), the characteristic data of a radiative metric, dilaton and axion is constructed by a simple `squaring procedure, giving a classical double copy at the level of radiation fields. We demonstrate the procedure with several examples where the characteristic data can be explicitly integrated; for linear fields this also sheds light on the twistorial description of Weyl double copy. Our second prescription applies to all asymptotically flat fields at the level of their asymptotic equations of motion: we give a map between any solution of the asymptotic Maxwell equations and any solution of the asymptotic Einstein equations at null infinity. This also extends to the asymptotic charges and their duals, preserves the soft and hard sectors between gauge theory and gravity, and is related to the usual notion of double copy in scattering amplitudes.
We extend the perturbative classical double copy to the analysis of bound systems. We first obtain the leading order perturbative gluon radiation field sourced by a system of interacting color charges in arbitrary time dependent orbits, and test its validity by taking relativistic bremsstrahlung and non-relativistic bound state limits. By generalizing the color to kinematic replacement rules recently used in the context of classical bremsstrahlung, we map the gluon emission amplitude to the radiation fields of dilaton gravity sourced by interacting particles in generic (self-consistent) orbits. As an application, we reproduce the leading post-Newtonian radiation fields and energy flux for point masses in non-relativistic orbits from the double copy of gauge theory.
We consider the classical double copy, that relates solutions of biadjoint scalar, gauge and gravity theories. Using a recently developed twistor expression of this idea, we use well-established techniques to show that the multipole moments of arbitr ary vacuum type D gravity fields are straightforwardly mapped to their counterparts in gauge and biadjoint scalar theory by the single and zeroth copies. We cross-check our results using previously obtained results for the Kerr metric. Our results provide further physical intuition of how the double copy operates.
We extend Shens recent formulation (arXiv:1806.07388) of the classical double copy, based on explicit color-kinematic duality, to the case of finite-size sources with non-zero spin. For the case of spinning Yang-Mills sources, the most general consis tent double copy consists of gravitating objects which carry pairs of spin degrees of freedom. We find that the couplings of such objects to background fields match those of a classical (i.e. heavy) closed bosonic string, suggesting a string theory interpretation of sources related by color-kinematics duality. As a special case, we identify a limit, corresponding to unoriented strings, in which the 2-form Kalb-Ramond axion field decouples from the gravitational side of the double copy. Finally, we apply the classical double copy to extended objects, described by the addition of finite-size operators to the worldline effective theory. We find that consistency of the color-to-kinematics map requires that the Wilson coefficients of tidal operators obey certain relations, indicating that the extended gravitating objects generated by the double copy of Yang-Mills are not completely generic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا