ﻻ يوجد ملخص باللغة العربية
Global regularity of axisymmetric incompressible Euler flows with non-trivial swirl in 3d is an outstanding open question. This work establishes that in the presence of uniform rotation, suitably small, localized and axisymmetric initial data lead to global strong solutions to the rotating 3d Euler equations. The solutions constructed are of Sobolev regularity, have non-vanishing swirl and scatter linearly, thanks to the dispersive effect induced by the rotation. To establish this, we introduce a framework that builds on the symmetries of the problem and precisely captures the anisotropic, dispersive mechanism due to rotation. This enables a fine analysis of the geometry of nonlinear interactions and allows us to propagate sharp decay bounds, which is crucial for the construction of global flows.
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical c
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique
This paper concerns with the existence of transonic shocks for steady Euler flows in a 3-D axisymmetric cylindrical nozzle, which are governed by the Euler equations with the slip boundary condition on the wall of the nozzle and a receiver pressure a
We study vanishing viscosity solutions to the axisymmetric Euler equations with (relative) vorticity in $L^p$ with $p>1$. We show that these solutions satisfy the corresponding vorticity equations in the sense of renormalized solutions. Moreover, we
A classical problem for the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. is that of finding regular solutions with highly concentrated vorticities around $N$ moving {em vortices}. The formal dynamic law for such