ﻻ يوجد ملخص باللغة العربية
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical circular vortex filament in $mathbb{R}^3$. The construction is based on a study of solutions to the similinear elliptic problem begin{equation*} -frac{1}{r}frac{partial}{partial r}Big(frac{1}{r}frac{partialpsi^varepsilon}{partial r}Big)-frac{1}{r^2}frac{partial^2psi^varepsilon}{partial z^2}=frac{1}{varepsilon^2}left(g(psi^varepsilon)+frac{f(psi^varepsilon)}{r^2}right), end{equation*} where $f$ and $g$ are two given functions of the Stokes stream function $psi^varepsilon$, and $varepsilon>0$ is a small parameter.
This paper concerns with the existence of transonic shocks for steady Euler flows in a 3-D axisymmetric cylindrical nozzle, which are governed by the Euler equations with the slip boundary condition on the wall of the nozzle and a receiver pressure a
Global regularity of axisymmetric incompressible Euler flows with non-trivial swirl in 3d is an outstanding open question. This work establishes that in the presence of uniform rotation, suitably small, localized and axisymmetric initial data lead to
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes
A classical problem for the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. is that of finding regular solutions with highly concentrated vorticities around $N$ moving {em vortices}. The formal dynamic law for such
We construct co-rotating and traveling vortex sheets for 2D incompressible Euler equation, which are supported on several small closed curves. These examples represent a new type of vortex sheet solutions other than two known classes. The constructio