ﻻ يوجد ملخص باللغة العربية
Sputnik Planitia, Plutos gigantic ice glacier, hosts numerous scientific mysteries, including the presence of thousands of elongated pit structures. We examine various attributes of these pit structures in New Horizons data sets, revealing their length, aspect ratios, and orientation properties; we also study their interior reflectivities, colors, and compositions, and compare these attributes to some other relevant regions on Pluto. We then comment on origin mechanisms of the pits and also the fate of the missing volatiles represented by the pits on Sputnik Planitia.
The deep nitrogen-covered Sputnik Planitia (SP; informal name) basin on Pluto is located very close to the longitude of Plutos tidal axis[1] and may be an impact feature [2], by analogy with other large basins in the solar system[3,4]. Reorientation[
Data from the New Horizons mission to Pluto show no craters on Sputnik Planum down to the detection limit (2 km for low resolution data, 625 m for high resolution data). The number of small Kuiper Belt Objects that should be impacting Pluto is known
We present the results of an investigation using near-infrared spectra of Pluto taken on 72 separate nights using SpeX/IRTF. These data were obtained between 2001 and 2013 at various sub-observer longitudes. The aim of this work was to confirm the pr
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25-2.50 micron spectral images for studying surface compositions, and measurements of Plutos atmosphere (tem
Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Plutos atmosphere. While the lower atmosphere (at altitudes <200 km) is consistent with ground-based stellar occultations, the upper atmosphere is muc