ترغب بنشر مسار تعليمي؟ اضغط هنا

The Atmosphere of Pluto as Observed by New Horizons

79   0   0.0 ( 0 )
 نشر من قبل Kelsi Singer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Plutos atmosphere. While the lower atmosphere (at altitudes <200 km) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N$_2$) dominates the atmosphere (at altitudes <1800 km or so), while methane (CH$_4$), acetylene (C$_2$H$_2$), ethylene (C$_2$H$_4$), and ethane (C$_2$H$_6$) are abundant minor species, and likely feed the production of an extensive haze which encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Plutos atmosphere to space. It is unclear whether the current state of Plutos atmosphere is representative of its average state--over seasonal or geologic time scales.

قيم البحث

اقرأ أيضاً

The New Horizons mission has provided resolved measurements of Plutos moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of $approx$40 km for Nix and Hydra and ~10 km for Styx and Kerberos. They are also hig hly elongated, with maximum to minimum axis ratios of $approx$2. All four moons have high albedos ( $approx$50-90 %) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages $gtrsim$ 4 Ga. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.
Recent observations of interplanetary medium (IPM) atomic hydrogen Lyman-{alpha} (Ly{alpha}) emission in the outer solar system, made with the Alice ultraviolet spectrograph on New Horizons (NH), are presented. The observations include regularly spac ed great-circle scans of the sky and pointed observations near the downstream and upstream flow directions of interstellar H atoms. The NH Alice data agree very well with the much earlier Voyager UVS results, after these are reduced by a factor of 2.4 in brightness, in accordance with recent re-analyses. In particular, the falloff of IPM Ly{alpha} brightness in the upstream-looking direction as a function of spacecraft distance from the Sun is well-matched by an expected 1/r dependence, but with an added constant brightness of ~40 Rayleighs. This additional brightness is a possible signature of the hydrogen wall at the heliopause or of a more distant background. Ongoing observations are planned at a cadence of roughly twice per year.
The Pluto system was recently explored by NASAs New Horizons spacecraft, making closest approach on 14 July 2015. Plutos surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice c rust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Plutos atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Plutos diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Plutos large moon Charon displays tectonics and evidence for a heterogeneous crustal composition, its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
NASAs New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Plutos encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved i n convection and advection, with a crater retention age no greater than $approx$10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, likely by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic, and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 Ga old that are extensionally fractured and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest proposed impactor size-frequency distributions proposed for the Kuiper belt.
The exploration of the Pluto-Charon system by the New Horizons spacecraft represents the first opportunity to understand the distribution of albedo and other photometric properties of the surfaces of objects in the Solar Systems Third Zone of distant ice-rich bodies. Images of the entire illuminated surface of Pluto and Charon obtained by the Long Range Reconnaissance Imager (LORRI) camera provide a global map of Pluto that reveals surface albedo variegations larger than any other Solar System world except for Saturns moon Iapetus. Normal reflectances on Pluto range from 0.08-1.0, and the low-albedo areas of Pluto are darker than any region of Charon. Charon exhibits a much blander surface with normal reflectances ranging from 0.20-0.73. Plutos albedo features are well-correlated with geologic features, although some exogenous low-albedo dust may be responsible for features seen to the west of the area informally named Tombaugh Regio. The albedo patterns of both Pluto and Charon are latitudinally organized, with the exception of Tombaugh Regio, with darker regions concentrated at the Plutos equator and Charons northern pole The phase curve of Pluto is similar to that of Triton, the large moon of Neptune believed to be a captured Kuiper Belt Object (KBO), while Charons is similar to that of the Moon. Preliminary Bond albedos are 0.25+/-0.03 for Charon and 0.72+/-0.07 for Pluto. Maps of an approximation to the Bond albedo for both Pluto and Charon are presented for the first time. Our work shows a connection between very high albedo (near unity) and planetary activity, a result that suggests the KBO Eris may be currently active.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا