ﻻ يوجد ملخص باللغة العربية
Deep neural networks produce state-of-the-art results when trained on a large number of labeled examples but tend to overfit when small amounts of labeled examples are used for training. Creating a large number of labeled examples requires considerable resources, time, and effort. If labeling new data is not feasible, so-called semi-supervised learning can achieve better generalisation than purely supervised learning by employing unlabeled instances as well as labeled ones. The work presented in this paper is motivated by the observation that transfer learning provides the opportunity to potentially further improve performance by exploiting models pretrained on a similar domain. More specifically, we explore the use of transfer learning when performing semi-supervised learning using self-learning. The main contribution is an empirical evaluation of transfer learning using different combinations of similarity metric learning methods and label propagation algorithms in semi-supervised learning. We find that transfer learning always substantially improves the models accuracy when few labeled examples are available, regardless of the type of loss used for training the neural network. This finding is obtained by performing extensive experiments on the SVHN, CIFAR10, and Plant Village image classification datasets and applying pretrained weights from Imagenet for transfer learning.
Consistency regularization is a technique for semi-supervised learning that underlies a number of strong results for classification with few labeled data. It works by encouraging a learned model to be robust to perturbations on unlabeled data. Here,
Training deep neural networks usually requires a large amount of labeled data to obtain good performance. However, in medical image analysis, obtaining high-quality labels for the data is laborious and expensive, as accurately annotating medical imag
Consistency training, which exploits both supervised and unsupervised learning with different augmentations on image, is an effective method of utilizing unlabeled data in semi-supervised learning (SSL) manner. Here, we present another version of the
In this work, we propose an ensemble of classifiers to distinguish between various degrees of abnormalities of the heart using Phonocardiogram (PCG) signals acquired using digital stethoscopes in a clinical setting, for the INTERSPEECH 2018 Computati
Federated learning (FL) has emerged with increasing popularity to collaborate distributed medical institutions for training deep networks. However, despite existing FL algorithms only allow the supervised training setting, most hospitals in realistic