ﻻ يوجد ملخص باللغة العربية
Calculations of high-energy processes involving the production of a large number of particles in weakly-coupled quantum field theories have previously signaled the need for novel non-perturbative behavior or even new physical phenomena. In some scenarios, already tree-level computations may enter the regime of large-order perturbation theory and therefore require a careful investigation. We demonstrate that in scalar quantum field theories with a unique global minimum, where suitably resummed perturbative expansions are expected to capture all relevant physical effects, perturbation theory may still suffer from severe shortcomings in the high-energy regime. As an example, we consider the computation of multiparticle threshold amplitudes of the form $1 to n$ in $varphi^6$ theory with a positive mass term, and show that they violate unitarity of the quantum theory for large $n$, even after the resummation of all leading-$n$ quantum corrections. We further argue that this is a generic feature of scalar field theories with higher-order self-interactions beyond $varphi^4$, thereby rendering the latter unique with respect to its high-energy behavior.
Cumulants of conserved charges provide important information about the physics of the quark-gluon plasma around the phase transition region, as they are by construction sensitive to changes in the degrees of freedom of the system. In this brief proce
We evaluate the second and fourth order quark number susceptibilities in hot QCD using two variations of resummed perturbation theory. On one hand, we carry out a one-loop calculation within hard-thermal-loop perturbation theory, and on the other han
Integral equations for meson-baryon scattering amplitudes are obtained by utilizing time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of baryon chiral perturbation theory. Effective potentials are defined as sums of two-
We discuss the determination of the strong coupling $alpha_mathrm{overline{MS}}^{}(m_mathrm{Z})$ or equivalently the QCD $Lambda$-parameter. Its determination requires the use of perturbation theory in $alpha_s(mu)$ in some scheme, $s$, and at some e
In this Ph.D. thesis, the primary goal is to present a recent investigation of the finite density thermodynamics of hot and dense quark-gluon plasma. As we are interested in a temperature regime, in which naive perturbation theory is known to lose it