ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the finite density equation of state of QCD via resummed perturbation theory

321   0   0.0 ( 0 )
 نشر من قبل Sylvain Mogliacci
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Sylvain Mogliacci




اسأل ChatGPT حول البحث

In this Ph.D. thesis, the primary goal is to present a recent investigation of the finite density thermodynamics of hot and dense quark-gluon plasma. As we are interested in a temperature regime, in which naive perturbation theory is known to lose its predictive power, we clearly need to use a refined approach. To this end, we adopt a resummed perturbation theory point of view and employ two different frameworks. We first use hard-thermal-loop perturbation theory (HLTpt) at leading order to obtain the pressure for nonvanishing quark chemical potentials, and next, inspired by dimensional reduction, resum the known four-loop weak coupling expansion for the quantity. We present and analyze our findings for various cumulants of conserved charges. This provides us with information, through correlations and fluctuations, on the degrees of freedom effectively present in the quark-gluon plasma right above the deconfinement transition. Moreover, we compare our results with state-of-the-art lattice Monte Carlo simulations as well as with a recent three-loop mass truncated HTLpt calculation. We obtain very good agreement between the two different perturbative schemes, as well as between them and lattice data, down to surprisingly low temperatures right above the phase transition. We also quantitatively test the convergence of an approximation, which is used in higher order loop calculations in HTLpt. This method based on expansions in mass parameters, is unavoidable beyond leading order, thus motivating our investigation. We find the ensuing convergence to be very fast, validating its use in higher order computations.



قيم البحث

اقرأ أيضاً

We perform a detailed analysis of the predictions of resummed perturbation theory for the pressure and the second-, fourth-, and sixth-order diagonal quark number susceptibilities in a hot and dense quark-gluon plasma. First, we present an exact one- loop calculation of the equation of state within hard-thermal-loop perturbation theory (HTLpt) and compare it to a previous one-loop HTLpt calculation that employed an expansion in the ratios of thermal masses and the temperature. We find that this expansion converges reasonably fast. We then perform a resummation of the existing four-loop weak coupling expression for the pressure, motivated by dimensional reduction. Finally, we compare the exact one-loop HTLpt and resummed dimensional reduction results with state-of-the-art lattice calculations and a recent mass-expanded three-loop HTLpt calculation.
We discuss the Hard Dense Loop resummation at finite quark mass and evaluate the equation of state (EoS) of cold and dense QCD matter in $beta$ equilibrium. The resummation in the quark sector has an effect of lowering the baryon number density and t he EoS turns out to have much smaller uncertainty than the perturbative QCD estimate. Our numerical results favor smooth matching between the EoS from the resummed QCD calculation at high density and the extrapolated EoS from the nuclear matter density region. We also point out that the speed of sound in our EoS slightly exceeds the conformal limit.
We evaluate the second and fourth order quark number susceptibilities in hot QCD using two variations of resummed perturbation theory. On one hand, we carry out a one-loop calculation within hard-thermal-loop perturbation theory, and on the other han d perform a resummation of the four-loop finite density equation of state derived using a dimensionally reduced effective theory. Our results are subsequently compared with recent high precision lattice data, and their agreement thoroughly analyzed.
194 - Sylvain Mogliacci 2013
Cumulants of conserved charges provide important information about the physics of the quark-gluon plasma around the phase transition region, as they are by construction sensitive to changes in the degrees of freedom of the system. In this brief proce edings contribution, I report on recent results for two such quantities from two different improved perturbative frameworks, as well as discuss their relevance for heavy ion experiments.
We determine the equation of state of QCD at finite chemical potential, to order $(mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the res ults are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~mu_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $mu_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا