ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Quantum Reinforcement Learning via Evolutionary Optimization

281   0   0.0 ( 0 )
 نشر من قبل Samuel Yen-Chi Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advance in classical reinforcement learning (RL) and quantum computation (QC) points to a promising direction of performing RL on a quantum computer. However, potential applications in quantum RL are limited by the number of qubits available in the modern quantum devices. Here we present two frameworks of deep quantum RL tasks using a gradient-free evolution optimization: First, we apply the amplitude encoding scheme to the Cart-Pole problem; Second, we propose a hybrid framework where the quantum RL agents are equipped with hybrid tensor network-variational quantum circuit (TN-VQC) architecture to handle inputs with dimensions exceeding the number of qubits. This allows us to perform quantum RL on the MiniGrid environment with 147-dimensional inputs. We demonstrate the quantum advantage of parameter saving using the amplitude encoding. The hybrid TN-VQC architecture provides a natural way to perform efficient compression of the input dimension, enabling further quantum RL applications on noisy intermediate-scale quantum devices.

قيم البحث

اقرأ أيضاً

We develop a general method for incentive-based programming of hybrid quantum-classical computing systems using reinforcement learning, and apply this to solve combinatorial optimization problems on both simulated and real gate-based quantum computer s. Relative to a set of randomly generated problem instances, agents trained through reinforcement learning techniques are capable of producing short quantum programs which generate high quality solutions on both types of quantum resources. We observe generalization to problems outside of the training set, as well as generalization from the simulated quantum resource to the physical quantum resource.
Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-tri vial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.
131 - Owen Lockwood , Mei Si 2020
The development of quantum computational techniques has advanced greatly in recent years, parallel to the advancements in techniques for deep reinforcement learning. This work explores the potential for quantum computing to facilitate reinforcement l earning problems. Quantum computing approaches offer important potential improvements in time and space complexity over traditional algorithms because of its ability to exploit the quantum phenomena of superposition and entanglement. Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning. We present our techniques for encoding classical data for a quantum variational circuit, we further explore pure and hybrid quantum algorithms for DQN and Double DQN. Our results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space. These comparison are conducted with two OpenAI Gym environments: CartPole and Blackjack, The success of this work is indicative of a strong future relationship between quantum machine learning and deep reinforcement learning.
While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but als o provide sufficient shaping to accomplish it. In this paper, we discuss a new perspective on reinforcement learning, recasting it as the problem of inferring actions that achieve desired outcomes, rather than a problem of maximizing rewards. To solve the resulting outcome-directed inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator reminiscent of the standard Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to design reward functions and leads to effective goal-directed behaviors.
The key approaches for machine learning, especially learning in unknown probabilistic environments are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of value updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is parallelly updated according to rewards. Some related characteristics of QRL such as convergence, optimality and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speed up learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given and the results demonstrate the effectiveness and superiority of QRL algorithm for some complex problems. The present work is also an effective exploration on the application of quantum computation to artificial intelligence.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا