ﻻ يوجد ملخص باللغة العربية
Lifting up objects from the floor has been identified as a risk factor for low back pain, whereby a flexed spine during lifting is often associated with producing higher loads in the lumbar spine. Even though recent biomechanical studies challenge these assumptions, conclusive evidence is still lacking. This study therefore aimed at comparing lumbar loads among different lifting styles using a comprehensive state-of-the-art motion capture-driven musculoskeletal modeling approach. Thirty healthy pain-free individuals were enrolled in this study and asked to repetitively lift a 15 kg-box by applying 1) a freestyle, 2) a squat and 3) a stoop lifting technique. Whole-body kinematics were recorded using an optical motion capture system and used to drive a full-body musculoskeletal model including a detailed thoracolumbar spine. Compressive, shear and total loads were calculated based on a static optimization approach and expressed as factor body weight (BW). In addition, lumbar lordosis angles and total lifting time were calculated. All parameters were compared among the lifting styles using a repeated measures design. For all lumbar segments, stoop lifting showed significantly lower compressive and total loads (-0.3 to -1.0BW) when compared to freestyle and squat lifting. Stoop lifting produced higher shear loads (+0.1 to +0.8BW) in the segments T12/L1 to L4/L5, but lower loads in L5/S1 (-0.2 to -0.4BW). Peak compressive and total loads during squat lifting occurred approximately 30% earlier in the lifting cycle compared to stoop lifting. Stoop lifting showed larger lumbar lordosis range of motion (35.9+/-10.1{deg}) than freestyle (24.2+/-7.3{deg}) and squat (25.1+/-8.2{deg}) lifting. Lifting time differed significantly with freestyle being executed the fastest (4.6+/-0.7s), followed by squat (4.9+/-0.7s) and stoop (5.9+/-1.1s).
The widely held belief that squat lifting should be preferred over stoop lifting to prevent back injury is increasingly being challenged by recent biomechanical evidence. However, most of these studies only focus on very localized parameters such as
Non-specific chronic low back pain (NSCLBP) is a major health problem, affecting about one fifth of the population worldwide. To avoid further pain or injury, patients with NSCLBP seem to adopt a stiffer movement pattern during everyday living activi
Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupan
Musculoskeletal models have the potential to improve diagnosis and optimize clinical treatment by predicting accurate outcomes on an individual basis. However, the subject-specific modeling of spinal alignment is often strongly simplified or is based
The pathogenesis of adolescent idiopathic scoliosis (AIS) remains poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information for the improvement of current treatment strategies. This