ﻻ يوجد ملخص باللغة العربية
Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupants in frontal crashes have shown that the lumbar spine can be subjected to axial compression followed by combined compression-flexion loading. Lumbar spine failure tolerance in combined compression-flexion has not been widely explored in the literature. Therefore, the goal of this study was to measure the failure tolerance of the lumbar spine in combined compression and flexion. Forty 3-vertebra lumbar spine segments were pre-loaded with axial compression and then subjected to dynamic flexion bending until failure. Clinically relevant middle vertebra fractures were observed in twenty-one of the specimens, including compression and burst fractures. The remaining nineteen specimens experienced failure at the potting grip interface. Since specimen characteristics and pre-test axial load varied widely within the sample, failure forces (mean 3.4 kN, range 1.6-5.1 kN) and moments (mean 73 Nm, range 0-181 Nm) also varied widely. Tobit univariate regressions were performed to determine the relationship between censored failure tolerance and specimen sex, segment type (upper/lower), age, and cross-sectional area. Age, sex, and cross-sectional area significantly affected failure force and moment individually (p<0.0024). These data can be used to develop injury prediction tools for lumbar spine fractures and further research in future safety systems.
We present an effective method to model empirical action potentials of specific patients in the human atria based on the minimal model of Bueno-Orovio, Cherry and Fenton adapted to atrial electrophysiology. In this model, three ionic are currents int
Lifting up objects from the floor has been identified as a risk factor for low back pain, whereby a flexed spine during lifting is often associated with producing higher loads in the lumbar spine. Even though recent biomechanical studies challenge th
In its permanent quest of mechanobiological homeostasis, our vascula-ture significantly adapts across multiple length and time scales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R)
Aortic Aneurysms are among the most critical cardiovascular diseases. The present study is focused on Ascending Thoracic Aortic Aneurysms (ATAA). The main causes of ATAA are commonly cardiac malformations like bicuspid aor-tic valve or genetic mutati
Presently 4T-1 luc cells were irradiated with proton under ultra-high dose rate FLASH or with gamma-ray with conventional dose rate, and then subcutaneous vaccination with or without Mn immuno-enhancing adjuvant into the mice for three times. One wee