ﻻ يوجد ملخص باللغة العربية
We propose a cosmological scenario in which the universe undergoes through a non-singular bounce, and after the bounce, it decelerates having a matter-like dominated evolution during some regime of the deceleration era, and finally at the present epoch it evolves through an accelerating stage. Our aim is to study such evolution in the context of Chern-Simons corrected F(R) gravity theory and confront the model with various observational data. Using the reconstruction technique, and in addition by employing suitable boundary conditions, we determine the form of F(R) for the entire possible range of the cosmic time. The form of F(R) seems to unify a non-singular bounce with a dark energy epoch, in particular, from a non-singular bounce to a deceleration epoch and from a deceleration epoch to a late time acceleration era. It is important to mention that the bouncing scenario in the present context is an asymmetric bounce, in particular, the Hubble radius monotonically increases and asymptotically diverges at the late contracting era, while it seems to decrease with time at the present epoch. Such evolution of the Hubble radius leads to the primordial perturbation modes generate at the deep contracting era when all the perturbation modes lie within the horizon. We calculate the scalar and tensor power spectra, and as a result, the primordial observables are found to be in agreement with the latest Planck 2018 constraints. In this regard, the Chern-Simons term seems to have considerable effects on the tensor perturbation evolution, however keeping intact the scalar part of the perturbation with that of in the case of a vacuum F(R) model, and as a result, the Chern-Simons term proves to play an important role in making the observable quantities consistent with the Planck results. Furthermore the theoretical expectation of the dark energy observables are confronted with the Planck+SNe+BAO data.
In gravity theories derived from a f(R) Lagrangian, matter is usually supposed to be minimally coupled to the metric, which hence defines a ``Jordan frame. However, since the field equations are fourth order, gravity possesses an extra degree of free
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
In this work we shall demonstrate that it is possible to describe in a unified way a primordial bounce with the dark energy era, in the context of Gauss-Bonnet modified gravity. Particularly, the early time bounce has a nearly scale invariant power s
A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution
We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu