ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells

142   0   0.0 ( 0 )
 نشر من قبل Iacopo Carusotto
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study the coherent nonlinear response of electrons confined in semiconductor quantum wells under the effect of an electromagnetic radiation close to resonance with an intersubband transition. Our approach is based on the time-dependent Schrodinger-Poisson equation stemming from a Hartree description of Coulomb-interacting electrons. This equation is solved by standard numerical tools and the results are interpreted in terms of approximated analytical formulas. For growing intensity, we observe a red-shift of the effective resonance frequency due to the reduction of the electric dipole moment and the corresponding suppression of the depolarization shift. The competition between coherent nonlinearities and incoherent saturation effects is discussed. The strength of the resulting optical nonlinearity is estimated across different frequency ranges from Mid-IR to THz with an eye to on-going experiments on intersubband polariton condensation and speculative quantum optical applications such as single-photon emission.



قيم البحث

اقرأ أيضاً

We have calculated the contribution of intersubband transitions to the third order optical nonlinear susceptibility, $chi^{(3)}(omega,omega,omega)$ for nonresonant as well as resonant third harmonic generation and $chi^{(3)}(omega,-omega,omega)$ for nonlinear refraction and absorption. As examples, we consider InAs/AlSb and GaAs/GaAlAs quantum wells. The effects of finite barrier height, energy band nonparabolicity, and high carrier concentrations are included. It is shown that quantum confinement, rather than the band nonparabolicity, is responsible for high values of nonresonant $chi^{(3)}_{zzzz}$. Very high values of $chi^{(3)}_{zzzz}$ are obtained for third harmonic generation and two photon absorption for incident wavelength near 10.6 $mu$m. Intensity dependence of refractive index and of absorption co-efficient is also discussed for intensity well above the saturation intensity. Effective medium theory is used to incorporate the collective effects.
We examine theoretically the intersubband transitions induced by laser beams of light with orbital angular momentum (twisted light) in semiconductor quantum wells at normal incidence. These transitions become possible in the absence of gratings thank s to the fact that collimated laser beams present a component of the lights electric field in the propagation direction. We derive the matrix elements of the light-matter interaction for a Bessel-type twisted-light beam represented by its vector potential in the paraxial approximation. Then, we consider the dynamics of photo-excited electrons making intersubband transitions between the first and second subbands of a standard semiconductor quantum well. Finally, we analyze the light-matter matrix elements in order to evaluate which transitions are more favorable for given orbital angular momentum of the light beam in the case of small semiconductor structures.
Temperature dependence of intersubband transitions in AlN/GaN multiple quantum wells grown with molecular beam epitaxy is investigated both by absorption studies at different temperatures and modeling of conduction-band electrons. For the absorption study, the sample is heated in increments up to $400^circ$C. The self-consistent Schrodinger-Poisson modeling includes temperature effects of the band-gap and the influence of thermal expansion on the piezoelectric field. We find that the intersubband absorption energy decreases only by $sim 6$ meV at $400^circ$C relative to its room temperature value.
The science and applications of electronics and optoelectronics have been driven for decades by progress in growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantiz ed states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional (2D) materials and hold unexplored potential to overcome the aforementioned limitations: They form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve and electrostatically control the intersubband absorption with unprecedented nanometer-scale spatial resolution. This work enables exploiting intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, LEDs and lasers.
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا