ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolingual versus Multilingual BERTology for Vietnamese Extractive Multi-Document Summarization

240   0   0.0 ( 0 )
 نشر من قبل Huy Quoc To
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent researches have demonstrated that BERT shows potential in a wide range of natural language processing tasks. It is adopted as an encoder for many state-of-the-art automatic summarizing systems, which achieve excellent performance. However, so far, there is not much work done for Vietnamese. In this paper, we showcase how BERT can be implemented for extractive text summarization in Vietnamese. We introduce a novel comparison between different multilingual and monolingual BERT models. The experiment results indicate that monolingual models produce promising results compared to other multilingual models and previous text summarizing models for Vietnamese.



قيم البحث

اقرأ أيضاً

Redundancy-aware extractive summarization systems score the redundancy of the sentences to be included in a summary either jointly with their salience information or separately as an additional sentence scoring step. Previous work shows the efficacy of jointly scoring and selecting sentences with neural sequence generation models. It is, however, not well-understood if the gain is due to better encoding techniques or better redundancy reduction approaches. Similarly, the contribution of salience versus diversity components on the created summary is not studied well. Building on the state-of-the-art encoding methods for summarization, we present two adaptive learning models: AREDSUM-SEQ that jointly considers salience and novelty during sentence selection; and a two-step AREDSUM-CTX that scores salience first, then learns to balance salience and redundancy, enabling the measurement of the impact of each aspect. Empirical results on CNN/DailyMail and NYT50 datasets show that by modeling diversity explicitly in a separate step, AREDSUM-CTX achieves significantly better performance than AREDSUM-SEQ as well as state-of-the-art extractive summarization baselines.
The progress in Query-focused Multi-Document Summarization (QMDS) has been limited by the lack of sufficient largescale high-quality training datasets. We present two QMDS training datasets, which we construct using two data augmentation methods: (1) transferring the commonly used single-document CNN/Daily Mail summarization dataset to create the QMDSCNN dataset, and (2) mining search-query logs to create the QMDSIR dataset. These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries. To cover both these real summary and query aspects, we build abstractive end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets. We also introduce new hierarchical encoders that enable a more efficient encoding of the query together with multiple documents. Empirical results demonstrate that our data augmentation and encoding methods outperform baseline models on automatic metrics, as well as on human evaluations along multiple attributes.
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our systems generated summaries. Data and models are available at https://github.com/allenai/ms2
168 - Yuning Mao , Yanru Qu , Yiqing Xie 2020
While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS : (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.
129 - Darsh J Shah , Lili Yu , Tao Lei 2021
We present a method for generating comparative summaries that highlights similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summar ization systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا