ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge States Scattering and Universality in Quantum Hall Systems

149   0   0.0 ( 0 )
 نشر من قبل Marcello Porta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the edge transport properties of interacting quantum Hall systems on a cylinder, in the infinite volume and zero temperature limit. We prove that the edge conductance is universal, and equal to the sum of the chiralities of the non-interacting edge modes. With respect to previous work, our result allows to consider a generic class of quantum Hall systems, displaying arbitrarily many edge modes. Our proof quantifies the validity and the limitations of the Luttinger liquid effective description for the edge currents. In particular, due to edge states scattering, the effective description alone is not able to predict the universality of the edge conductance. The exact quantization follows after fully taking into account the bulk degrees of freedom, whose precise contribution to the edge transport is determined thanks to lattice conservation laws.



قيم البحث

اقرأ أيضاً

Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T he electron motion is confined to unbounded subsets of the plane by confining potential barriers. The edges of the confining potential barrier create edge currents. In this, the first of two papers, we prove explicit lower bounds on the edge currents associated with one-edge, unbounded geometries formed by various confining potentials. This work extends some known results that we review. The edge currents are carried by states with energy localized between any two Landau levels. These one-edge geometries describe the electron confined to certain unbounded regions in the plane obtained by deforming half-plane regions. We prove that the currents are stable under various potential perturbations, provided the perturbations are suitably small relative to the magnetic field strength, including perturbations by random potentials. For these cases of one-edge geometries, the existence of, and the estimates on, the edge currents imply that the corresponding Hamiltonian has intervals of absolutely continuous spectrum. In the second paper of this series, we consider the edge currents associated with two-edge geometries describing bounded, cylinder-like regions, and unbounded, strip-like, regions.
Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T he electron motion is confined to bounded or unbounded subsets of the plane by confining potential barriers. The edges of the confining potential barriers create edge currents. This is the second of two papers in which we review recent progress and prove explicit lower bounds on the edge currents associated with one- and two-edge geometries. In this paper, we study various unbounded and bounded, two-edge geometries with soft and hard confining potentials. These two-edge geometries describe the electron confined to unbounded regions in the plane, such as a strip, or to bounded regions, such as a finite length cylinder. We prove that the edge currents are stable under various perturbations, provided they are suitably small relative to the magnetic field strength, including perturbations by random potentials. The existence of, and the estimates on, the edge currents are independent of the spectral type of the operator.
Bilayer quantum Hall (BLQH) systems, which underlie a $U(4)$ symmetry, display unique quantum coherence effects. We study coherent states (CS) on the complex Grassmannian $mathbb G_2^4=U(4)/U(2)^2$, orthonormal basis, $U(4)$ generators and their matr ix elements in the reproducing kernel Hilbert space $mathcal H_lambda(mathbb G_2^4)$ of analytic square-integrable holomorphic functions on $mathbb G_2^4$, which carries a unitary irreducible representation of $U(4)$ with index $lambdainmathbb N$. A many-body representation of the previous construction is introduced through an oscillator realization of the $U(4)$ Lie algebra generators in terms of eight boson operators. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the BLQH jargon. In particular, the index $lambda$ is related to the number of flux quanta bound to a bi-fermion in the composite fermion picture of Jain for fractions of the filling factor $ u=2$. The simpler, and better known, case of spin-$s$ CS on the Riemann-Bloch sphere $mathbb{S}^2=U(2)/U(1)^2$ is also treated in parallel, of which Grassmannian $mathbb G_2^4$-CS can be regarded as a generalized (matrix) version.
We present a non-chiral version of the Intermediate Long Wave (ILW) equation that can model nonlinear waves propagating on two opposite edges of a quantum Hall system, taking into account inter-edge interactions. We obtain exact soliton solutions gov erned by the hyperbolic Calogero-Moser-Sutherland (CMS) model, and we give a Lax pair, a Hirota form, and conservation laws for this new equation. We also present a periodic non-chiral ILW equation, together with its soliton solutions governed by the elliptic CMS model.
225 - J. Dubail , N. Read , E. H. Rezayi 2012
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in the thermodynamic limit, assuming generalized screening (i.e. short-range correlations only) inside the quantum Hall droplet, and using the language of boundary conformal field theory (boundary CFT). These inner products take universal values in this limit: they are equal to the corresponding inner products in the bulk 2d chiral CFT which underlies the trial wavefunction. This is a bulk/edge correspondence; it shows the equality between equal-time correlators along the edge and the correlators of the bulk CFT up to a Wick rotation. This approach is then used to analyze the entanglement spectrum (ES) of the ground state obtained with a bipartition AcupB in real-space. Starting from our universal result for inner products in the thermodynamic limit, we tackle corrections to scaling using standard field-theoretic and renormalization group arguments. We prove that generalized screening implies that the entanglement Hamiltonian H_E = - log {rho}_A is isospectral to an operator that is local along the cut between A and B. We also show that a similar analysis can be carried out for particle partition. We discuss the close analogy between the formalism of trial wavefunctions given by conformal blocks and Tensor Product States, for which results analogous to ours have appeared recently. Finally, the edge theory and entanglement spectrum of px + ipy paired superfluids are treated in a similar fashion in the appendix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا