ﻻ يوجد ملخص باللغة العربية
We consider the edge transport properties of interacting quantum Hall systems on a cylinder, in the infinite volume and zero temperature limit. We prove that the edge conductance is universal, and equal to the sum of the chiralities of the non-interacting edge modes. With respect to previous work, our result allows to consider a generic class of quantum Hall systems, displaying arbitrarily many edge modes. Our proof quantifies the validity and the limitations of the Luttinger liquid effective description for the edge currents. In particular, due to edge states scattering, the effective description alone is not able to predict the universality of the edge conductance. The exact quantization follows after fully taking into account the bulk degrees of freedom, whose precise contribution to the edge transport is determined thanks to lattice conservation laws.
Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T
Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T
Bilayer quantum Hall (BLQH) systems, which underlie a $U(4)$ symmetry, display unique quantum coherence effects. We study coherent states (CS) on the complex Grassmannian $mathbb G_2^4=U(4)/U(2)^2$, orthonormal basis, $U(4)$ generators and their matr
We present a non-chiral version of the Intermediate Long Wave (ILW) equation that can model nonlinear waves propagating on two opposite edges of a quantum Hall system, taking into account inter-edge interactions. We obtain exact soliton solutions gov
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in