ترغب بنشر مسار تعليمي؟ اضغط هنا

Unit-Modulus Wireless Federated Learning Via Penalty Alternating Minimization

70   0   0.0 ( 0 )
 نشر من قبل Shuai Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications. This paper proposes a unit-modulus wireless FL (UMWFL) framework, which simultaneously uploads local model parameters and computes global model parameters via optimized phase shifting. The proposed framework avoids sophisticated baseband signal processing, leading to both low communication delays and implementation costs. A training loss bound is derived and a penalty alternating minimization (PAM) algorithm is proposed to minimize the nonconvex nonsmooth loss bound. Experimental results in the Car Learning to Act (CARLA) platform show that the proposed UMWFL framework with PAM algorithm achieves smaller training losses and testing errors than those of the benchmark scheme.



قيم البحث

اقرأ أيضاً

In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-o ff between the number of communication rounds and communication round time while harvesting energy to compensate the energy expenditure. We formulate and solve an optimization problem by considering the number of local iterations on devices, the time to transmit-receive the model updates, and to harvest sufficient energy. Numerical results indicate that maximum ratio transmission and zero-forcing beamforming for the optimization of the local iterations on devices substantially boost the test accuracy of the learning task. Moreover, maximum ratio transmission instead of zero-forcing provides the best test accuracy and communication round time trade-off for various energy harvesting percentages. Thus, it is possible to learn a model quickly with few communication rounds without depleting the battery.
217 - Tao Sun , Dongsheng Li , Hao Jiang 2019
In this paper, we consider a class of nonconvex problems with linear constraints appearing frequently in the area of image processing. We solve this problem by the penalty method and propose the iteratively reweighted alternating minimization algorit hm. To speed up the algorithm, we also apply the continuation strategy to the penalty parameter. A convergence result is proved for the algorithm. Compared with the nonconvex ADMM, the proposed algorithm enjoys both theoretical and computational advantages like weaker convergence requirements and faster speed. Numerical results demonstrate the efficiency of the proposed algorithm.
A novel approach is presented in this work for context-aware connectivity and processing optimization of Internet of things (IoT) networks. Different from the state-of-the-art approaches, the proposed approach simultaneously selects the best connecti vity and processing unit (e.g., device, fog, and cloud) along with the percentage of data to be offloaded by jointly optimizing energy consumption, response-time, security, and monetary cost. The proposed scheme employs a reinforcement learning algorithm, and manages to achieve significant gains compared to deterministic solutions. In particular, the requirements of IoT devices in terms of response-time and security are taken as inputs along with the remaining battery level of the devices, and the developed algorithm returns an optimized policy. The results obtained show that only our method is able to meet the holistic multi-objective optimisation criteria, albeit, the benchmark approaches may achieve better results on a particular metric at the cost of failing to reach the other targets. Thus, the proposed approach is a device-centric and context-aware solution that accounts for the monetary and battery constraints.
64 - Cong Shen , Jie Xu , Sihui Zheng 2021
We advocate a new resource allocation framework, which we term resource rationing, for wireless federated learning (FL). Unlike existing resource allocation methods for FL, resource rationing focuses on balancing resources across learning rounds so t hat their collective impact on the federated learning performance is explicitly captured. This new framework can be integrated seamlessly with existing resource allocation schemes to optimize the convergence of FL. In particular, a novel later-is-better principle is at the front and center of resource rationing, which is validated empirically in several instances of wireless FL. We also point out technical challenges and research opportunities that are worth pursuing. Resource rationing highlights the benefits of treating the emerging FL as a new class of service that has its own characteristics, and designing communication algorithms for this particular service.
As data generation increasingly takes place on devices without a wired connection, Machine Learning over wireless networks becomes critical. Many studies have shown that traditional wireless protocols are highly inefficient or unsustainable to suppor t Distributed Machine Learning. This is creating the need for new wireless communication methods. In this survey, we give an exhaustive review of the state of the art wireless methods that are specifically designed to support Machine Learning services. Namely, over-the-air computation and radio resource allocation optimized for Machine Learning. In the over-the-air approach, multiple devices communicate simultaneously over the same time slot and frequency band to exploit the superposition property of wireless channels for gradient averaging over-the-air. In radio resource allocation optimized for Machine Learning, Active Learning metrics allow for data evaluation to greatly optimize the assignment of radio resources. This paper gives a comprehensive introduction to these methods, reviews the most important works, and highlights crucial open problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا