ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Multi-label Learning

136   0   0.0 ( 0 )
 نشر من قبل Dong Yuan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Embedding approaches have become one of the most pervasive techniques for multi-label classification. However, the training process of embedding methods usually involves a complex quadratic or semidefinite programming problem, or the model may even involve an NP-hard problem. Thus, such methods are prohibitive on large-scale applications. More importantly, much of the literature has already shown that the binary relevance (BR) method is usually good enough for some applications. Unfortunately, BR runs slowly due to its linear dependence on the size of the input data. The goal of this paper is to provide a simple method, yet with provable guarantees, which can achieve competitive performance without a complex training process. To achieve our goal, we provide a simple stochastic sketch strategy for multi-label classification and present theoretical results from both algorithmic and statistical learning perspectives. Our comprehensive empirical studies corroborate our theoretical findings and demonstrate the superiority of the proposed methods.



قيم البحث

اقرأ أيضاً

Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and ev en impossible to obtain precisely labeled samples. Several PML solutions have been proposed to combat with the prone misled by the irrelevant labels concealed in the candidate labels, but they generally focus on the smoothness assumption in feature space or low-rank assumption in label space, while ignore the negative information between features and labels. Specifically, if two instances have largely overlapped candidate labels, irrespective of their feature similarity, their ground-truth labels should be similar; while if they are dissimilar in the feature and candidate label space, their ground-truth labels should be dissimilar with each other. To achieve a credible predictor on PML data, we propose a novel approach called PML-LFC (Partial Multi-label Learning with Label and Feature Collaboration). PML-LFC estimates the confidence values of relevant labels for each instance using the similarity from both the label and feature spaces, and trains the desired predictor with the estimated confidence values. PML-LFC achieves the predictor and the latent label matrix in a reciprocal reinforce manner by a unified model, and develops an alternative optimization procedure to optimize them. Extensive empirical study on both synthetic and real-world datasets demonstrates the superiority of PML-LFC.
187 - Zhuo Yang , Yufei Han , Guoxian Yu 2019
We propose to formulate multi-label learning as a estimation of class distribution in a non-linear embedding space, where for each label, its positive data embeddings and negative data embeddings distribute compactly to form a positive component and negative component respectively, while the positive component and negative component are pushed away from each other. Duo to the shared embedding space for all labels, the distribution of embeddings preserves instances label membership and feature matrix, thus encodes the feature-label relation and nonlinear label dependency. Labels of a given instance are inferred in the embedding space by measuring the probabilities of its belongingness to the positive or negative components of each label. Specially, the probabilities are modeled as the distance from the given instance to representative positive or negative prototypes. Extensive experiments validate that the proposed solution can provide distinctively more accurate multi-label classification than other state-of-the-art algorithms.
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing label dependency with dimension reduction. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, so that may result in performance degeneration. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method.
Multi-typed objects Multi-view Multi-instance Multi-label Learning (M4L) deals with interconnected multi-typed objects (or bags) that are made of diverse instances, represented with heterogeneous feature views and annotated with a set of non-exclusiv e but semantically related labels. M4L is more general and powerful than the typical Multi-view Multi-instance Multi-label Learning (M3L), which only accommodates single-typed bags and lacks the power to jointly model the naturally interconnected multi-typed objects in the physical world. To combat with this novel and challenging learning task, we develop a joint matrix factorization based solution (M4L-JMF). Particularly, M4L-JMF firstly encodes the diverse attributes and multiple inter(intra)-associations among multi-typed bags into respective data matrices, and then jointly factorizes these matrices into low-rank ones to explore the composite latent representation of each bag and its instances (if any). In addition, it incorporates a dispatch and aggregation term to distribute the labels of bags to individual instances and reversely aggregate the labels of instances to their affiliated bags in a coherent manner. Experimental results on benchmark datasets show that M4L-JMF achieves significantly better results than simple adaptions of existing M3L solutions on this novel problem.
We propose a learning algorithm capable of learning from label proportions instead of direct data labels. In this scenario, our data are arranged into various bags of a certain size, and only the proportions of each label within a given bag are known . This is a common situation in cases where per-data labeling is lengthy, but a more general label is easily accessible. Several approaches have been proposed to learn in this setting with linear models in the multiclass setting, or with nonlinear models in the binary classification setting. Here we investigate the more general nonlinear multiclass setting, and compare two differentiable loss functions to train end-to-end deep neural networks from bags with label proportions. We illustrate the relevance of our methods on an image classification benchmark, and demonstrate the possibility to learn accurate image classifiers from bags of images.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا