ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectral property of hypergraph coverings

166   0   0.0 ( 0 )
 نشر من قبل Yi-Zheng Fan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $H$ be connected $m$-uniform hypergraph and $mathcal{A}(H)$ be the adjacency tensor of $H$. The stabilizing index of $H$, denoted by $s(H)$, is exactly the number of eigenvectors of $mathcal{A}(H)$ associated with the spectral radius, and the cyclic index of $H$, denoted by $c(H)$, is the number of eigenvalues of $mathcal{A}(H)$ with modulus equal to the spectral radius. Let $bar{H}$ be a $k$-fold covering of $H$. Then $bar{H}$ is isomorphic to a hypergraph $H_B^phi$ derived from the incidence graph $B_H$ of $H$ together with a permutation voltage assignment $phi$ in the symmetric group $mathbb{S}_k$. In this paper, we first characterize the connectedness of $bar{H}$ by using $H_B^phi$ for subsequent discussion. By applying the theory of module and group representation, we prove that if $bar{H}$ is connected, then $s(H) mid s(bar{H})$ and $c(H) mid c(bar{H})$. In the situation that $bar{H}$ is a $2$-fold covering of $H$, if $m$ is even, we show that regardless of multiplicities, the spectrum of $mathcal{A}(bar{H})$ contains the spectrum of $mathcal{A}(H)$ and the spectrum of a signed hypergraph constructed from $H$ and the covering projection; if $m$ is odd, we give an explicit formula for $s(bar{H})$.



قيم البحث

اقرأ أيضاً

166 - Aditya Potukuchi 2019
Let $mathcal{H}$ be a $t$-regular hypergraph on $n$ vertices and $m$ edges. Let $M$ be the $m times n$ incidence matrix of $mathcal{H}$ and let us denote $lambda =max_{v perp overline{1},|v| = 1}|Mv|$. We show that the discrepancy of $mathcal{H}$ is $O(sqrt{t} + lambda)$. As a corollary, this gives us that for every $t$, the discrepancy of a random $t$-regular hypergraph with $n$ vertices and $m geq n$ edges is almost surely $O(sqrt{t})$ as $n$ grows. The proof also gives a polynomial time algorithm that takes a hypergraph as input and outputs a coloring with the above guarantee.
We introduce the set $mathcal{G}^{rm SSP}$ of all simple graphs $G$ with the property that each symmetric matrix corresponding to a graph $G in mathcal{G}^{rm SSP}$ has the strong spectral property. We find several families of graphs in $mathcal{G}^{ rm SSP}$ and, in particular, characterise the trees in $mathcal{G}^{rm SSP}$.
131 - John Lenz , Dhruv Mubayi 2012
Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990s.
69 - Vance Faber , Noah Streib 2016
Let H be a hypergraph on n vertices with the property that no edge contains another. We prove some results for a special case of the Isolation Lemma when the label set for the edges of H can only take two values. Given any set of vertices S and an ed ge e, the weight of S in e is the size of e plus the size of the intersection of S and e. A versal S for an edge e is a set of vertices with weight in e smaller than the weight in any other edge. We show that H always has at least n + 1 versals except if H is either the set of all singletons T_n or the complement of T_n or the 4-cycle graph. In those exceptional cases there are only n versals.
By complexity of a finite graph we mean the number of spanning trees in the graph. The aim of the present paper is to give a new approach for counting complexity $tau(n)$ of cyclic $n$-fold coverings of a graph. We give an explicit analytic formula f or $tau(n)$ in terms of Chebyshev polynomials and find its asymptotic behavior as $ntoinfty$ through the Mahler measure of the associated voltage polynomial. We also prove that $F(x)=sumlimits_{n=1}^inftytau(n)x^n$ is a rational function with integer coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا