ﻻ يوجد ملخص باللغة العربية
Let $H$ be connected $m$-uniform hypergraph and $mathcal{A}(H)$ be the adjacency tensor of $H$. The stabilizing index of $H$, denoted by $s(H)$, is exactly the number of eigenvectors of $mathcal{A}(H)$ associated with the spectral radius, and the cyclic index of $H$, denoted by $c(H)$, is the number of eigenvalues of $mathcal{A}(H)$ with modulus equal to the spectral radius. Let $bar{H}$ be a $k$-fold covering of $H$. Then $bar{H}$ is isomorphic to a hypergraph $H_B^phi$ derived from the incidence graph $B_H$ of $H$ together with a permutation voltage assignment $phi$ in the symmetric group $mathbb{S}_k$. In this paper, we first characterize the connectedness of $bar{H}$ by using $H_B^phi$ for subsequent discussion. By applying the theory of module and group representation, we prove that if $bar{H}$ is connected, then $s(H) mid s(bar{H})$ and $c(H) mid c(bar{H})$. In the situation that $bar{H}$ is a $2$-fold covering of $H$, if $m$ is even, we show that regardless of multiplicities, the spectrum of $mathcal{A}(bar{H})$ contains the spectrum of $mathcal{A}(H)$ and the spectrum of a signed hypergraph constructed from $H$ and the covering projection; if $m$ is odd, we give an explicit formula for $s(bar{H})$.
Let $mathcal{H}$ be a $t$-regular hypergraph on $n$ vertices and $m$ edges. Let $M$ be the $m times n$ incidence matrix of $mathcal{H}$ and let us denote $lambda =max_{v perp overline{1},|v| = 1}|Mv|$. We show that the discrepancy of $mathcal{H}$ is
We introduce the set $mathcal{G}^{rm SSP}$ of all simple graphs $G$ with the property that each symmetric matrix corresponding to a graph $G in mathcal{G}^{rm SSP}$ has the strong spectral property. We find several families of graphs in $mathcal{G}^{
Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform
Let H be a hypergraph on n vertices with the property that no edge contains another. We prove some results for a special case of the Isolation Lemma when the label set for the edges of H can only take two values. Given any set of vertices S and an ed
By complexity of a finite graph we mean the number of spanning trees in the graph. The aim of the present paper is to give a new approach for counting complexity $tau(n)$ of cyclic $n$-fold coverings of a graph. We give an explicit analytic formula f