ترغب بنشر مسار تعليمي؟ اضغط هنا

On complexity of cyclic coverings of graphs

115   0   0.0 ( 0 )
 نشر من قبل Ilya Mednykh
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By complexity of a finite graph we mean the number of spanning trees in the graph. The aim of the present paper is to give a new approach for counting complexity $tau(n)$ of cyclic $n$-fold coverings of a graph. We give an explicit analytic formula for $tau(n)$ in terms of Chebyshev polynomials and find its asymptotic behavior as $ntoinfty$ through the Mahler measure of the associated voltage polynomial. We also prove that $F(x)=sumlimits_{n=1}^inftytau(n)x^n$ is a rational function with integer coefficients.



قيم البحث

اقرأ أيضاً

A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a cyclic interval $t$-coloring if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered as con secutive to color $t$. In this paper we introduce and investigate a new notion, the cyclic deficiency of a graph $G$, defined as the minimum number of pendant edges whose attachment to $G$ yields a graph admitting a cyclic interval coloring; this number can be considered as a measure of closeness of $G$ of being cyclically interval colorable. We determine or bound the cyclic deficiency of several families of graphs. In particular, we present examples of graphs of bounded maximum degree with arbitrarily large cyclic deficiency, and graphs whose cyclic deficiency approaches the number of vertices. Finally, we conjecture that the cyclic deficiency of any graph does not exceed the number of vertices, and we present several results supporting this conjecture.
A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a emph{cyclic interval $t$-coloring} if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered as consecutive to color $t$. We prove that a bipartite graph $G$ with even maximum degree $Delta(G)geq 4$ admits a cyclic interval $Delta(G)$-coloring if for every vertex $v$ the degree $d_G(v)$ satisfies either $d_G(v)geq Delta(G)-2$ or $d_G(v)leq 2$. We also prove that every Eulerian bipartite graph $G$ with maximum degree at most $8$ has a cyclic interval coloring. Some results are obtained for $(a,b)$-biregular graphs, that is, bipartite graphs with the vertices in one part all having degree $a$ and the vertices in the other part all having degree $b$; it has been conjectured that all these have cyclic interval colorings. We show that all $(4,7)$-biregular graphs as well as all $(2r-2,2r)$-biregular ($rgeq 2$) graphs have cyclic interval colorings. Finally, we prove that all complete multipartite graphs admit cyclic interval colorings; this settles in the affirmative, a conjecture of Petrosyan and Mkhitaryan.
A proper edge-coloring of a graph $G$ with colors $1,ldots,t$ is called an emph{interval cyclic $t$-coloring} if all colors are used, and the edges incident to each vertex $vin V(G)$ are colored by $d_{G}(v)$ consecutive colors modulo $t$, where $d_{ G}(v)$ is the degree of a vertex $v$ in $G$. A graph $G$ is emph{interval cyclically colorable} if it has an interval cyclic $t$-coloring for some positive integer $t$. The set of all interval cyclically colorable graphs is denoted by $mathfrak{N}_{c}$. For a graph $Gin mathfrak{N}_{c}$, the least and the greatest values of $t$ for which it has an interval cyclic $t$-coloring are denoted by $w_{c}(G)$ and $W_{c}(G)$, respectively. In this paper we investigate some properties of interval cyclic colorings. In particular, we prove that if $G$ is a triangle-free graph with at least two vertices and $Gin mathfrak{N}_{c}$, then $W_{c}(G)leq vert V(G)vert +Delta(G)-2$. We also obtain bounds on $w_{c}(G)$ and $W_{c}(G)$ for various classes of graphs. Finally, we give some methods for constructing of interval cyclically non-colorable graphs.
We determine the maximum number of maximal independent sets of arbitrary graphs in terms of their covering numbers and we completely characterize the extremal graphs. As an application, we give a similar result for Konig-Egervary graphs in terms of their matching numbers.
151 - Fabrizio Catanese 2021
We describe the birational and the biregular theory of cyclic and Abelian coverings between real varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا