ترغب بنشر مسار تعليمي؟ اضغط هنا

Road Network Evolution in the Urban and Rural United States Since 1900

262   0   0.0 ( 0 )
 نشر من قبل Keith Burghardt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine a key component of human settlements mediating pollution and congestion, as well as economic development: roads and their expansion in cities, towns and villages. Our analysis of road networks in more than 850 US cities and rural counties since 1900 reveals significant variations in the structure of roads both within cities and across the conterminous US. Despite differences in the evolution of these networks, there are commonalities: newer roads tend to become less grid-like. These results persist across the rural-urban continuum and are therefore not just a product of urban growth. These findings illuminate the need for policies for urban and rural planning including the critical assessment of new development trends.



قيم البحث

اقرأ أيضاً

Urban scaling analysis, the study of how aggregated urban features vary with the population of an urban area, provides a promising framework for discovering commonalities across cities and uncovering dynamics shared by cities across time and space. H ere, we use the urban scaling framework to study an important, but under-explored feature in this community - income inequality. We propose a new method to study the scaling of income distributions by analyzing total income scaling in population percentiles. We show that income in the least wealthy decile (10%) scales close to linearly with city population, while income in the most wealthy decile scale with a significantly superlinear exponent. In contrast to the superlinear scaling of total income with city population, this decile scaling illustrates that the benefits of larger cities are increasingly unequally distributed. For the poorest income deciles, cities have no positive effect over the null expectation of a linear increase. We repeat our analysis after adjusting income by housing cost, and find similar results. We then further analyze the shapes of income distributions. First, we find that mean, variance, skewness, and kurtosis of income distributions all increase with city size. Second, the Kullback-Leibler divergence between a citys income distribution and that of the largest city decreases with city population, suggesting the overall shape of income distribution shifts with city population. As most urban scaling theories consider densifying interactions within cities as the fundamental process leading to the superlinear increase of many features, our results suggest this effect is only seen in the upper deciles of the cities. Our finding encourages future work to consider heterogeneous models of interactions to form a more coherent understanding of urban scaling.
Given the rapidly evolving landscape of linguistic prevalence, whereby a majority of the worlds existing languages are dying out in favor of the adoption of a comparatively fewer set of languages, the factors behind this phenomenon has been the subje ct of vigorous research. The majority of approaches investigate the temporal evolution of two competing languages in the form of differential equations describing their behavior at large scale. In contrast, relatively few consider the spatial dimension of the problem. Furthermore while much attention has focused on the phenomena of language shift---the adoption of majority languages in lieu of minority ones---relatively less light has been shed on linguistic coexistence, where two or more languages persist in a geographically contiguous region. Here, we study the geographical component of language spread on a discrete medium to monitor the dispersal of language species at a microscopic level. Language dynamics is modeled through a reaction-diffusion system that occurs on a heterogeneous network of contacts based on population flows between urban centers. We show that our framework accurately reproduces empirical linguistic trends driven by a combination of the Turing instability, a mechanism for spontaneous pattern-formation applicable to many natural systems, the heterogeneity of the contact network, and the asymmetries in how people perceive the status of a language. We demonstrate the robustness of our formulation on two datasets corresponding to linguistic coexistence in northern Spain and southern Austria.
213 - Jingyuan Wang , Yu Mao , Jing Li 2014
Mitigating traffic congestion on urban roads, with paramount importance in urban development and reduction of energy consumption and air pollution, depends on our ability to foresee road usage and traffic conditions pertaining to the collective behav ior of drivers, raising a significant question: to what degree is road traffic predictable in urban areas? Here we rely on the precise records of daily vehicle mobility based on GPS positioning device installed in taxis to uncover the potential daily predictability of urban traffic patterns. Using the mapping from the degree of congestion on roads into a time series of symbols and measuring its entropy, we find a relatively high daily predictability of traffic conditions despite the absence of any a priori knowledge of drivers origins and destinations and quite different travel patterns between weekdays and weekends. Moreover, we find a counterintuitive dependence of the predictability on travel speed: the road segment associated with intermediate average travel speed is most difficult to be predicted. We also explore the possibility of recovering the traffic condition of an inaccessible segment from its adjacent segments with respect to limited observability. The highly predictable traffic patterns in spite of the heterogeneity of drivers behaviors and the variability of their origins and destinations enables development of accurate predictive models for eventually devising practical strategies to mitigate urban road congestion.
Flight delay happens every day in airports all over the world. However, systemic investigation in large scales remains a challenge. We collect primary data of domestic departure records from Bureau of Transportation Statistics of United States, and d o empirical statistics with them in form of complementary cumulative distributions functions (CCDFs) and transmission function of the delays. Fourteen main airlines are characterized by two types of CCDFs: shifted power-law and exponentially truncated shifted power-law. By setting up two phenomenological models based on mean-field approximation in temporal regime, we convert effect from other delay factors into a propagation one. Three parameters meaningful in measuring airlines emerge as universal metrics. Moreover, method used here could become a novel approach to revealing practical meanings hidden in temporal big data in wide fields.
The quantitative study of traffic dynamics is crucial to ensure the efficiency of urban transportation networks. The current work investigates the spatial properties of congestion, that is, we aim to characterize the city areas where traffic bottlene cks occur. The analysis of a large amount of real road networks in previous works showed that congestion points experience spatial abrupt transitions, namely they shift away from the city center as larger urban areas are incorporated. The fundamental ingredient behind this effect is the entanglement of central and arterial roads, embedded in separated geographical regions. In this paper we extend the analysis of the conditions yielding abrupt transitions of congestion location. First, we look into the more realistic situation in which arterial and central roads, rather than lying on sharply separated regions, present spatial overlap. It results that this affects the position of bottlenecks and introduces new possible congestion areas. Secondly, we pay particular attention to the role played by the edge distribution, proving that it allows to smooth the transitions profile, and so to control the congestion displacement. Finally, we show that the aforementioned phenomenology may be recovered also as a consequence of a discontinuity in the nodes density, in a domain with uniform connectivity. Our results provide useful insights for the design and optimization of urban road networks, and the management of the daily traffic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا