ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of dynamical control of three-level open systems with a superconducting qutrit

110   0   0.0 ( 0 )
 نشر من قبل Ri-Hua Zheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for the dynamical control in three-level open systems and realize it in the experiment with a superconducting qutrit. Our work demonstrates that in the Markovian environment for a relatively long time (3 us), the systemic populations or coherence can still strictly follow the preset evolution paths. This is the first experiment for precisely controlling the Markovian dynamics of three-level open systems, providing a solid foundation for the future realization of dynamical control in multiple open systems. An instant application of the techniques demonstrated in this experiment is to stabilize the energy of quantum batteries.



قيم البحث

اقرأ أيضاً

149 - R.Bianchetti 2010
A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies. However, special care has to be taken to avoid unwanted higher-level populations when using short control pulses. Here we demonstrate the preparation of arbitrary three-level superposition states using optimal control techniques in a transmon. Performing dispersive read-out we extract the populations of all three levels of the qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the prepared qutrit states and evaluate the fidelities of a set of states, finding on average 96%.
Advanced control in Lambda ($Lambda$) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics eme rging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the $Lambda$-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime.
We analyze quantum state-transfer optimization within hybrid open systems, from a noisy (write-in) qubit to its quiet counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depen d on the bath-memory time and the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no circumstances is the fastest transfer optimal (for a given transfer energy).
Quantum computers must be able to function in the presence of decoherence. The simplest strategy for decoherence reduction is dynamical decoupling (DD), which requires no encoding overhead and works by converting quantum gates into decoupling pulses. Here, using the IBM and Rigetti platforms, we demonstrate that the DD method is suitable for implementation in todays relatively noisy and small-scale cloud based quantum computers. Using DD, we achieve substantial fidelity gains relative to unprotected, free evolution of individual superconducting transmon qubits. To a lesser degree, DD is also capable of protecting entangled two-qubit states. We show that dephasing and spontaneous emission errors are dominant in these systems, and that different DD sequences are capable of mitigating both effects. Unlike previous work demonstrating the use of quantum error correcting codes on the same platforms, we make no use of post-selection and hence report unconditional fidelity improvements against natural decoherence.
Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possib le, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable system consisting of a qutrit coupled to two qubits. This system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates. Furthermore, the system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of the presented circuit makes it a promising candidate to serve as a building block for larger networks capable of performing involved quantum computational tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا