ﻻ يوجد ملخص باللغة العربية
Quantum computers must be able to function in the presence of decoherence. The simplest strategy for decoherence reduction is dynamical decoupling (DD), which requires no encoding overhead and works by converting quantum gates into decoupling pulses. Here, using the IBM and Rigetti platforms, we demonstrate that the DD method is suitable for implementation in todays relatively noisy and small-scale cloud based quantum computers. Using DD, we achieve substantial fidelity gains relative to unprotected, free evolution of individual superconducting transmon qubits. To a lesser degree, DD is also capable of protecting entangled two-qubit states. We show that dephasing and spontaneous emission errors are dominant in these systems, and that different DD sequences are capable of mitigating both effects. Unlike previous work demonstrating the use of quantum error correcting codes on the same platforms, we make no use of post-selection and hence report unconditional fidelity improvements against natural decoherence.
Currently available superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors. The errors can be attributed to sources such as open quantum system effects and spurious inter-qubit couplings (crosstal
Quantum annealing (QA) is a heuristic algorithm for finding low-energy configurations of a system, with applications in optimization, machine learning, and quantum simulation. Up to now, all implementations of QA have been limited to qubits coupled v
Protecting quantum states from the decohering effects of the environment is of great importance for the development of quantum computation devices and quantum simulators. Here, we introduce a continuous dynamical decoupling protocol that enables us t
Qubit measurements are central to quantum information processing. In the field of superconducting qubits, standard readout techniques are not only limited by the signal-to-noise ratio, but also by state relaxation during the measurement. In this work
The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ devices with three-qubit gates will enable the realization of more