ﻻ يوجد ملخص باللغة العربية
Research in media forensics has gained traction to combat the spread of misinformation. However, most of this research has been directed towards content generated on social media. Biomedical image forensics is a related problem, where manipulation or misuse of images reported in biomedical research documents is of serious concern. The problem has failed to gain momentum beyond an academic discussion due to an absence of benchmark datasets and standardized tasks. In this paper we present BioFors -- the first dataset for benchmarking common biomedical image manipulations. BioFors comprises 47,805 images extracted from 1,031 open-source research papers. Images in BioFors are divided into four categories -- Microscopy, Blot/Gel, FACS and Macroscopy. We also propose three tasks for forensic analysis -- external duplication detection, internal duplication detection and cut/sharp-transition detection. We benchmark BioFors on all tasks with suitable state-of-the-art algorithms. Our results and analysis show that existing algorithms developed on common computer vision datasets are not robust when applied to biomedical images, validating that more research is required to address the unique challenges of biomedical image forensics.
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for large-scale datasets. However, cu
We introduce CoWeSe (the Corpus Web Salud Espa~nol), the largest Spanish biomedical corpus to date, consisting of 4.5GB (about 750M tokens) of clean plain text. CoWeSe is the result of a massive crawler on 3000 Spanish domains executed in 2020. The c
Logo detection has been gaining considerable attention because of its wide range of applications in the multimedia field, such as copyright infringement detection, brand visibility monitoring, and product brand management on social media. In this pap
Multi-focus image fusion, a technique to generate an all-in-focus image from two or more partially-focused source images, can benefit many computer vision tasks. However, currently there is no large and realistic dataset to perform convincing evaluat
We introduce RP2K, a new large-scale retail product dataset for fine-grained image classification. Unlike previous datasets focusing on relatively few products, we collect more than 500,000 images of retail products on shelves belonging to 2000 diffe