ﻻ يوجد ملخص باللغة العربية
Multi-focus image fusion, a technique to generate an all-in-focus image from two or more partially-focused source images, can benefit many computer vision tasks. However, currently there is no large and realistic dataset to perform convincing evaluation and comparison of algorithms in multi-focus image fusion. Moreover, it is difficult to train a deep neural network for multi-focus image fusion without a suitable dataset. In this letter, we introduce a large and realistic multi-focus dataset called Real-MFF, which contains 710 pairs of source images with corresponding ground truth images. The dataset is generated by light field images, and both the source images and the ground truth images are realistic. To serve as both a well-established benchmark for existing multi-focus image fusion algorithms and an appropriate training dataset for future development of deep-learning-based methods, the dataset contains a variety of scenes, including buildings, plants, humans, shopping malls, squares and so on. We also evaluate 10 typical multi-focus algorithms on this dataset for the purpose of illustration.
Deep neural networks have been very successful in image estimation applications such as compressive-sensing and image restoration, as a means to estimate images from partial, blurry, or otherwise degraded measurements. These networks are trained on a
Multi-focus image fusion (MFIF) has attracted considerable interests due to its numerous applications. While much progress has been made in recent years with efforts on developing various MFIF algorithms, some issues significantly hinder the fair and
Research in media forensics has gained traction to combat the spread of misinformation. However, most of this research has been directed towards content generated on social media. Biomedical image forensics is a related problem, where manipulation or
In this paper we present a large dataset with a variety of mobile mapping sensors collected using a handheld device carried at typical walking speeds for nearly 2.2 km through New College, Oxford. The dataset includes data from two commercially avail
Video crowd localization is a crucial yet challenging task, which aims to estimate exact locations of human heads in the given crowded videos. To model spatial-temporal dependencies of human mobility, we propose a multi-focus Gaussian neighbor attent