ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Two-Stream Models in Multivariate Space for Video Recognition

153   0   0.0 ( 0 )
 نشر من قبل Xinyu Gong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional video models rely on a single stream to capture the complex spatial-temporal features. Recent work on two-stream video models, such as SlowFast network and AssembleNet, prescribe separate streams to learn complementary features, and achieve stronger performance. However, manually designing both streams as well as the in-between fusion blocks is a daunting task, requiring to explore a tremendously large design space. Such manual exploration is time-consuming and often ends up with sub-optimal architectures when computational resources are limited and the exploration is insufficient. In this work, we present a pragmatic neural architecture search approach, which is able to search for two-stream video models in giant spaces efficiently. We design a multivariate search space, including 6 search variables to capture a wide variety of choices in designing two-stream models. Furthermore, we propose a progressive search procedure, by searching for the architecture of individual streams, fusion blocks, and attention blocks one after the other. We demonstrate two-stream models with significantly better performance can be automatically discovered in our design space. Our searched two-stream models, namely Auto-TSNet, consistently outperform other models on standard benchmarks. On Kinetics, compared with the SlowFast model, our Auto-TSNet-L model reduces FLOPS by nearly 11 times while achieving the same accuracy 78.9%. On Something-Something-V2, Auto-TSNet-M improves the accuracy by at least 2% over other methods which use less than 50 GFLOPS per video.



قيم البحث

اقرأ أيضاً

Two-stream networks have achieved great success in video recognition. A two-stream network combines a spatial stream of RGB frames and a temporal stream of Optical Flow to make predictions. However, the temporal redundancy of RGB frames as well as th e high-cost of optical flow computation creates challenges for both the performance and efficiency. Recent works instead use modern compressed video modalities as an alternative to the RGB spatial stream and improve the inference speed by orders of magnitudes. Previous works create one stream for each modality which are combined with an additional temporal stream through late fusion. This is redundant since some modalities like motion vectors already contain temporal information. Based on this observation, we propose a compressed domain two-stream network IP TSN for compressed video recognition, where the two streams are represented by the two types of frames (I and P frames) in compressed videos, without needing a separate temporal stream. With this goal, we propose to fully exploit the motion information of P-stream through generalized distillation from optical flow, which largely improves the efficiency and accuracy. Our P-stream runs 60 times faster than using optical flow while achieving higher accuracy. Our full IP TSN, evaluated over public action recognition benchmarks (UCF101, HMDB51 and a subset of Kinetics), outperforms other compressed domain methods by large margins while improving the total inference speed by 20%.
Learning to represent videos is a very challenging task both algorithmically and computationally. Standard video CNN architectures have been designed by directly extending architectures devised for image understanding to include the time dimension, u sing modules such as 3D convolutions, or by using two-stream design to capture both appearance and motion in videos. We interpret a video CNN as a collection of multi-stream convolutional blocks connected to each other, and propose the approach of automatically finding neural architectures with better connectivity and spatio-temporal interactions for video understanding. This is done by evolving a population of overly-connected architectures guided by connection weight learning. Architectures combining representations that abstract different input types (i.e., RGB and optical flow) at multiple temporal resolutions are searched for, allowing different types or sources of information to interact with each other. Our method, referred to as AssembleNet, outperforms prior approaches on public video datasets, in some cases by a great margin. We obtain 58.6% mAP on Charades and 34.27% accuracy on Moments-in-Time.
A standard pipeline of current face recognition frameworks consists of four individual steps: locating a face with a rough bounding box and several fiducial landmarks, aligning the face image using a pre-defined template, extracting representations a nd comparing. Among them, face detection, landmark detection and representation learning have long been studied and a lot of works have been proposed. As an essential step with a significant impact on recognition performance, the alignment step has attracted little attention. In this paper, we first explore and highlight the effects of different alignment templates on face recognition. Then, for the first time, we try to search for the optimal template automatically. We construct a well-defined searching space by decomposing the template searching into the crop size and vertical shift, and propose an efficient method Face Alignment Policy Search (FAPS). Besides, a well-designed benchmark is proposed to evaluate the searched policy. Experiments on our proposed benchmark validate the effectiveness of our method to improve face recognition performance.
We present Mobile Video Networks (MoViNets), a family of computation and memory efficient video networks that can operate on streaming video for online inference. 3D convolutional neural networks (CNNs) are accurate at video recognition but require l arge computation and memory budgets and do not support online inference, making them difficult to work on mobile devices. We propose a three-step approach to improve computational efficiency while substantially reducing the peak memory usage of 3D CNNs. First, we design a video network search space and employ neural architecture search to generate efficient and diverse 3D CNN architectures. Second, we introduce the Stream Buffer technique that decouples memory from video clip duration, allowing 3D CNNs to embed arbitrary-length streaming video sequences for both training and inference with a small constant memory footprint. Third, we propose a simple ensembling technique to improve accuracy further without sacrificing efficiency. These three progressive techniques allow MoViNets to achieve state-of-the-art accuracy and efficiency on the Kinetics, Moments in Time, and Charades video action recognition datasets. For instance, MoViNet-A5-Stream achieves the same accuracy as X3D-XL on Kinetics 600 while requiring 80% fewer FLOPs and 65% less memory. Code will be made available at https://github.com/tensorflow/models/tree/master/official/vision.
Analyzing videos of human actions involves understanding the temporal relationships among video frames. State-of-the-art action recognition approaches rely on traditional optical flow estimation methods to pre-compute motion information for CNNs. Suc h a two-stage approach is computationally expensive, storage demanding, and not end-to-end trainable. In this paper, we present a novel CNN architecture that implicitly captures motion information between adjacent frames. We name our approach hidden two-stream CNNs because it only takes raw video frames as input and directly predicts action classes without explicitly computing optical flow. Our end-to-end approach is 10x faster than its two-stage baseline. Experimental results on four challenging action recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet v1.2 show that our approach significantly outperforms the previous best real-time approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا