ﻻ يوجد ملخص باللغة العربية
Automated knowledge discovery from trending chemical literature is essential for more efficient biomedical research. How to extract detailed knowledge about chemical reactions from the core chemistry literature is a new emerging challenge that has not been well studied. In this paper, we study the new problem of fine-grained chemical entity typing, which poses interesting new challenges especially because of the complex name mentions frequently occurring in chemistry literature and graphic representation of entities. We introduce a new benchmark data set (CHEMET) to facilitate the study of the new task and propose a novel multi-modal representation learning framework to solve the problem of fine-grained chemical entity typing by leveraging external resources with chemical structures and using cross-modal attention to learn effective representation of text in the chemistry domain. Experiment results show that the proposed framework outperforms multiple state-of-the-art methods.
As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of
Named entity typing (NET) is a classification task of assigning an entity mention in the context with given semantic types. However, with the growing size and granularity of the entity types, rare researches in previous concern with newly emerged ent
Knowledge graph entity typing aims to infer entities missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities contextual information. Specifically, we des