ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Label-aware Event Trigger and Argument Classification

89   0   0.0 ( 0 )
 نشر من قبل Hongming Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying events and mapping them to pre-defined event types has long been an important natural language processing problem. Most previous work has been heavily relying on labor-intensive and domain-specific annotations while ignoring the semantic meaning contained in the labels of the event types. As a result, the learned models cannot effectively generalize to new domains, where new event types could be introduced. In this paper, we propose an unsupervised event extraction pipeline, which first identifies events with available tools (e.g., SRL) and then automatically maps them to pre-defined event types with our proposed unsupervised classification model. Rather than relying on annotated data, our model matches the semantics of identified events with those of event type labels. Specifically, we leverage pre-trained language models to contextually represent pre-defined types for both event triggers and arguments. After we map identified events to the target types via representation similarity, we use the event ontology (e.g., argument type Victim can only appear as the argument of event type Attack) as global constraints to regularize the prediction. The proposed approach is shown to be very effective when tested on the ACE-2005 dataset, which has 33 trigger and 22 argument types. Without using any annotation, we successfully map 83% of the triggers and 54% of the arguments to the correct types, almost doubling the performance of previous zero-shot approaches.

قيم البحث

اقرأ أيضاً

97 - Qian Li , Shu Guo , Jia Wu 2021
Event extraction (EE), which acquires structural event knowledge from texts, can be divided into two sub-tasks: event type classification and element extraction (namely identifying triggers and arguments under different role patterns). As different e vent types always own distinct extraction schemas (i.e., role patterns), previous work on EE usually follows an isolated learning paradigm, performing element extraction independently for different event types. It ignores meaningful associations among event types and argument roles, leading to relatively poor performance for less frequent types/roles. This paper proposes a novel neural association framework for the EE task. Given a document, it first performs type classification via constructing a document-level graph to associate sentence nodes of different types, and adopting a graph attention network to learn sentence embeddings. Then, element extraction is achieved by building a universal schema of argument roles, with a parameter inheritance mechanism to enhance role preference for extracted elements. As such, our model takes into account type and role associations during EE, enabling implicit information sharing among them. Experimental results show that our approach consistently outperforms most state-of-the-art EE methods in both sub-tasks. Particularly, for types/roles with less training data, the performance is superior to the existing methods.
In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search eng ine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task.
Few-Shot Event Classification (FSEC) aims at developing a model for event prediction, which can generalize to new event types with a limited number of annotated data. Existing FSEC studies have achieved high accuracy on different benchmarks. However, we find they suffer from trigger biases that signify the statistical homogeneity between some trigger words and target event types, which we summarize as trigger overlapping and trigger separability. The biases can result in context-bypassing problem, i.e., correct classifications can be gained by looking at only the trigger words while ignoring the entire context. Therefore, existing models can be weak in generalizing to unseen data in real scenarios. To further uncover the trigger biases and assess the generalization ability of the models, we propose two new sampling methods, Trigger-Uniform Sampling (TUS) and COnfusion Sampling (COS), for the meta tasks construction during evaluation. Besides, to cope with the context-bypassing problem in FSEC models, we introduce adversarial training and trigger reconstruction techniques. Experiments show these techniques help not only improve the performance, but also enhance the generalization ability of models.
One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.
92 - Xin Liu , Jiefu Ou , Yangqiu Song 2021
Discourse relations among arguments reveal logical structures of a debate conversation. However, no prior work has explicitly studied how the sequence of discourse relations influence a claims impact. This paper empirically shows that the discourse r elations between two arguments along the context path are essential factors for identifying the persuasive power of an argument. We further propose DisCOC to inject and fuse the sentence-level structural discourse information with contextualized features derived from large-scale language models. Experimental results and extensive analysis show that the attention and gate mechanisms that explicitly model contexts and texts can indeed help the argument impact classification task defined by Durmus et al. (2019), and discourse structures among the context path of the claim to be classified can further boost the performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا