ترغب بنشر مسار تعليمي؟ اضغط هنا

Sympathetic cooling of a trapped proton mediated by an LC circuit

80   0   0.0 ( 0 )
 نشر من قبل Matthew Bohman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient cooling of trapped charged particles is essential to many fundamental physics experiments, to high-precision metrology, and to quantum technology. Until now, sympathetic cooling has required close-range Coulomb interactions, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enables energy exchange over a distance of 9 cm. We also demonstrate the cooling of a resonant mode of a macroscopic LC circuit with laser-cooled ions and sympathetic cooling of an individually trapped proton, reaching temperatures far below the environmental temperature. Notably, as this technique uses only image-current interactions, it can be easily applied to an experiment with antiprotons, facilitating improved precision in matter-antimatter comparisons and dark matter searches.



قيم البحث

اقرأ أيضاً

A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
87 - S. Kraft , M. Mudrich , K. Singer 2001
We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO$_2$ laser, and allowed to interact for a given period of time. The temperature of the lithium gas is found to decrease when in thermal contact with cold cesium. The timescale of thermalization yields an estimate for the Li-Cs cross-section.
We investigate the dynamics of an ion sympathetically cooled by another laser-cooled ion or small ion crystal. To this end, we develop simple models of the cooling dynamics in the limit of weak Coulomb interactions. Experimentally, we create a two-io n crystal of Ca$^+$ and Al$^+$ by photo-ionization of neutral atoms produced by laser ablation. We characterize the velocity distribution of the laser-ablated atoms crossing the trap by time-resolved fluorescence spectroscopy. We observe neutral atom velocities much higher than the ones of thermally heated samples and find as a consequence long sympathethic cooling times before crystallization occurs. Our key result is a new technique for detecting the loading of an initially hot ion with energy in the eV range by monitoring the motional state of a Doppler-cooled ion already present in the trap. This technique not only detects the ion but also provides information about dynamics of the sympathetic cooling process.
433 - M. Mudrich , S. Kraft , K. Singer 2001
We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO$_2$ laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to $20 mu$K, efficiently d ecreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing $^{133}$Cs-$^7$Li collisions is $8 times 10^{-12}$ cm$^2$, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).
We present and derive analytic expressions for a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly compensated trap. We conclude that in current experimental implementations this collisional heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion motion. We determine conditions on the atom-ion mass ratio and on the trap parameters for reaching the s-wave collision regime and the trap ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا