ﻻ يوجد ملخص باللغة العربية
We present and derive analytic expressions for a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly compensated trap. We conclude that in current experimental implementations this collisional heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion motion. We determine conditions on the atom-ion mass ratio and on the trap parameters for reaching the s-wave collision regime and the trap ground state.
We theoretically investigate the process of splitting two-ion crystals in segmented Paul traps, i.e. the structural transition from two ions confined in a common well to ions confined in separate wells. The precise control of this process by applicat
In this paper, direct observation of micromotion for multiple ions in a laser-cooled trapped ion crystal is discussed along with a novel measurement technique for micromotion amplitude. Micromotion is directly observed using a time-resolving, single-
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. Th
We report sympathetic cooling of $^{113}$Cd$^+$ by laser-cooled $^{40}$Ca$^+$ in a linear Paul trap for microwave clocks. Long-term low-temperature confinement of $^{113}$Cd$^+$ ions was achieved. The temperature of these ions was measured at $90(10)
We study sympathetic cooling of the radial ion motion in a linear RF trap in mixed barium-ytterbium chains. Barium ions are Doppler-cooled, while ytterbium ions are cooled through their interaction with cold barium ions. We estimate the efficiency of