ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum error correction in a solid-state hybrid spin register

280   0   0.0 ( 0 )
 نشر من قبل Gerald Waldherr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid quantum systems seek to combine the strength of its constituents to master the fundamental conflicting requirements of quantum technology: fast and accurate systems control together with perfect shielding from the environment, including the measurements apparatus, to achieve long quantum coherence. Excellent examples for hybrid quantum systems are heterogeneous spin systems where electron spins are used for readout and control while nuclear spins are used as long-lived quantum bits. Here we show that joint initialization, projective readout and fast local and non-local gate operations are no longer conflicting requirements in those systems, even under ambient conditions. We demonstrate high-fidelity initialization of a whole spin register (99 %) and single-shot readout of multiple individual nuclear spins by using the ancillary electron spin of a nitrogen-vacancy defect in diamond. Implementation of a novel non-local gate generic to our hybrid electron-nuclear quantum register allows to prepare entangled states of three nuclear spins, with fidelities exceeding 85 %. An important tool for scalable quantum computation is quantum error correction. Combining, for the first time, optimal-control based error avoidance with error correction, we realize a three-qubit phase-flip error correction algorithm. Utilizing optimal control, all of the above algorithms achieve fidelities approaching fault tolerant quantum operation, thus paving the way to large scale integrations. Our techniques can be used to improve scaling of quantum networks relying on diamond spins, phosphorous in silicon or other spin systems like quantum dots, silicon carbide or rare earth ions in solids.



قيم البحث

اقرأ أيضاً

Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.
Spins associated to single defects in solids provide promising qubits for quantum information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations and long-range entanglement. However, c ontrol has so far been limited to a few qubits, with entangled states of three spins demonstrated. Realizing larger multi-qubit registers is challenging due to the need for quantum gates that avoid crosstalk and protect the coherence of the complete register. In this paper, we present novel decoherence-protected gates that combine dynamical decoupling of an electron spin with selective phase-controlled driving of nuclear spins. We use these gates to realize a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy center and 9 nuclear spins in diamond. We show that the register is fully connected by generating entanglement between all 45 possible qubit pairs, and realize genuine multipartite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-qubit memory. We show coherence times up to 63(2) seconds - the longest reported for a single solid-state qubit - and demonstrate that two-qubit entangled states can be stored for over 10 seconds. Our results enable the control of large quantum registers with long coherence times and therefore open the door to advanced quantum algorithms and quantum networks with solid-state spin qubits.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real ize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
Quantum registers that combine the attractive properties of different types of qubits are useful for many different applications. They also pose a number of challenges, often associated with the large differences in coupling strengths between the dif ferent types of qubits. One example is the non-resonant effect that alternating electromagnetic fields have on the transitions of qubits that are not targeted by the specific gate operation. The example being studied here is known as Bloch-Siegert shift. Unless these shifts are accounted for and, if possible, compensated, they can completely destroy the information contained in the quantum register. Here we study this effect quantitatively in the important example of the nitrogen vacancy (NV) center in diamond and demonstrate how it can be eliminated.
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so called crossbar architectures. Recen tly we made a proposal for a large scale quantum processor~[Li et al. arXiv:1711.03807 (2017)] to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا