ﻻ يوجد ملخص باللغة العربية
Hybrid quantum systems seek to combine the strength of its constituents to master the fundamental conflicting requirements of quantum technology: fast and accurate systems control together with perfect shielding from the environment, including the measurements apparatus, to achieve long quantum coherence. Excellent examples for hybrid quantum systems are heterogeneous spin systems where electron spins are used for readout and control while nuclear spins are used as long-lived quantum bits. Here we show that joint initialization, projective readout and fast local and non-local gate operations are no longer conflicting requirements in those systems, even under ambient conditions. We demonstrate high-fidelity initialization of a whole spin register (99 %) and single-shot readout of multiple individual nuclear spins by using the ancillary electron spin of a nitrogen-vacancy defect in diamond. Implementation of a novel non-local gate generic to our hybrid electron-nuclear quantum register allows to prepare entangled states of three nuclear spins, with fidelities exceeding 85 %. An important tool for scalable quantum computation is quantum error correction. Combining, for the first time, optimal-control based error avoidance with error correction, we realize a three-qubit phase-flip error correction algorithm. Utilizing optimal control, all of the above algorithms achieve fidelities approaching fault tolerant quantum operation, thus paving the way to large scale integrations. Our techniques can be used to improve scaling of quantum networks relying on diamond spins, phosphorous in silicon or other spin systems like quantum dots, silicon carbide or rare earth ions in solids.
Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence,
Spins associated to single defects in solids provide promising qubits for quantum information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations and long-range entanglement. However, c
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
Quantum registers that combine the attractive properties of different types of qubits are useful for many different applications. They also pose a number of challenges, often associated with the large differences in coupling strengths between the dif
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so called crossbar architectures. Recen